Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 8, Pages 1165–1179
DOI: https://doi.org/10.1070/SM2001v192n08ABEH000587
(Mi sm587)
 

This article is cited in 48 scientific papers (total in 48 papers)

On homological dimensions

A. A. Gerko

M. V. Lomonosov Moscow State University
References:
Abstract: For finite modules over a local ring the general problem is considered of finding an extension of the class of modules of finite projective dimension preserving various properties. In the first section the concept of a suitable complex is introduced, which is a generalization of both a dualizing complex and a suitable module. Several properties of the dimension of modules with respect to such complexes are established. In particular, a generalization of Golod's theorem on the behaviour of $G_K$-dimension with respect to a suitable module $K$ under factorization by ideals of a special kind is obtained and a new form of the Avramov–Foxby conjecture on the transitivity of $G$-dimension is suggested. In the second section a class of modules containing modules of finite CI-dimension is considered, which has some additional properties. A dimension constructed in the third section characterizes the Cohen–Macaulay rings in precisely the same way as the class of modules of finite projective dimension characterizes regular rings and the class of modules of finite CI-dimension characterizes complete intersections.
Received: 24.08.2000
Bibliographic databases:
UDC: 512.717
MSC: 13D05, 13C15
Language: English
Original paper language: Russian
Citation: A. A. Gerko, “On homological dimensions”, Sb. Math., 192:8 (2001), 1165–1179
Citation in format AMSBIB
\Bibitem{Ger01}
\by A.~A.~Gerko
\paper On homological dimensions
\jour Sb. Math.
\yr 2001
\vol 192
\issue 8
\pages 1165--1179
\mathnet{http://mi.mathnet.ru//eng/sm587}
\crossref{https://doi.org/10.1070/SM2001v192n08ABEH000587}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1862245}
\zmath{https://zbmath.org/?q=an:1029.13010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172729100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035647926}
Linking options:
  • https://www.mathnet.ru/eng/sm587
  • https://doi.org/10.1070/SM2001v192n08ABEH000587
  • https://www.mathnet.ru/eng/sm/v192/i8/p79
  • This publication is cited in the following 48 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:797
    Russian version PDF:353
    English version PDF:57
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024