Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 8, Pages 1133–1138
DOI: https://doi.org/10.1070/SM2001v192n08ABEH000585
(Mi sm585)
 

This article is cited in 4 scientific papers (total in 4 papers)

On modality and complexity of affine embeddings

I. V. Arzhantsev

M. V. Lomonosov Moscow State University
References:
Abstract: Let $G$ be a reductive algebraic group and let $H$ be a reductive subgroup of $G$. The modality of a $G$-variety $X$ is the largest number of the parameters in a continuous family of $G$-orbits in $X$. A precise formula for the maximum value of the modality over all affine embeddings of the homogeneous space $G/H$ is obtained.
Received: 27.09.2000
Bibliographic databases:
UDC: 512.74
MSC: 13A50, 14R20, 32M12
Language: English
Original paper language: Russian
Citation: I. V. Arzhantsev, “On modality and complexity of affine embeddings”, Sb. Math., 192:8 (2001), 1133–1138
Citation in format AMSBIB
\Bibitem{Arz01}
\by I.~V.~Arzhantsev
\paper On modality and complexity of affine embeddings
\jour Sb. Math.
\yr 2001
\vol 192
\issue 8
\pages 1133--1138
\mathnet{http://mi.mathnet.ru//eng/sm585}
\crossref{https://doi.org/10.1070/SM2001v192n08ABEH000585}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1862243}
\zmath{https://zbmath.org/?q=an:1068.14054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172729100010}
\elib{https://elibrary.ru/item.asp?id=14325085}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035540522}
Linking options:
  • https://www.mathnet.ru/eng/sm585
  • https://doi.org/10.1070/SM2001v192n08ABEH000585
  • https://www.mathnet.ru/eng/sm/v192/i8/p47
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024