Abstract:
We consider the problem of representing functions $f\in L^p(\mathbb R^d)$ by a series in elements of the affine system
$$
\psi_{j,k}(x)=\lvert\det a_j\rvert^{1/2}\psi(a_jx-bk), \qquad j\in\mathbb N, \quad k\in\mathbb Z^d.
$$
The corresponding representation theorems are established on the basis of the frame inequalities
$$
A\|g\|_q\le\|\{(g,\psi_{j,k})\}\|_Y\le B\|g\|_q
$$
for the Fourier coefficients $\displaystyle(g,\psi_{j,k})=\int_{\mathbb R^d}g(x)\psi_{j,k}(x)\,dx$
of functions $g\in L^q(\mathbb R^d)$, $1/p+1/q=1$, where ${\|\cdot\|}_Y$ is the norm in some Banach
space of number families $\{y_{j,k}\}$ and $0<A\le B<\infty$ are constants.
In particular, it is proved that if the integral of a function $\psi\in L^1\cap L^p(\mathbb R^d)$, $1<p<\infty$,
is nonzero, so $\displaystyle\int_{\mathbb R^d}\psi(x)\,dx\ne0$ and the system of translates
$\{\psi(x-bk):k\in\mathbb Z^d\}$ is $p$-Besselian in the space $L^p(\mathbb R^d)$, then for any function $f\in L^p(\mathbb R^d)$ we have the representation
$$
f=\sum_{j\in\mathbb N}\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k},
$$
where the coefficients satisfy the condition
$$
\sum_{j\in\mathbb N}\lvert\det a_j\rvert^{1/2-1/p}
\biggl(\sum_{k\in\mathbb Z^d}|c_{j,k}|^p\biggr)^{1/p}<\infty.
$$
Bibliography: 19 titles.
Keywords:
affine systems, affine synthesis, frames in a Banach space.
\Bibitem{Ter09}
\by P.~A.~Terekhin
\paper Banach frames in the affine synthesis problem
\jour Sb. Math.
\yr 2009
\vol 200
\issue 9
\pages 1383--1402
\mathnet{http://mi.mathnet.ru/eng/sm5655}
\crossref{https://doi.org/10.1070/SM2009v200n09ABEH004041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583973}
\zmath{https://zbmath.org/?q=an:1187.42027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1383T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273971200005}
\elib{https://elibrary.ru/item.asp?id=19066156}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70450189742}
Linking options:
https://www.mathnet.ru/eng/sm5655
https://doi.org/10.1070/SM2009v200n09ABEH004041
https://www.mathnet.ru/eng/sm/v200/i9/p127
This publication is cited in the following 7 articles:
Anton Baranov, Timur Batenev, “Representing Systems of Reproducing Kernels in Spaces of Analytic Functions”, Results Math, 78:4 (2023)
Krishna K.M., Johnson P.S., “Frames For Metric Spaces”, Results Math., 77:1 (2022), 49
K. S. Speransky, P. A. Terekhin, “On existence of frames based on the Szegö kernel in the Hardy space”, Russian Math. (Iz. VUZ), 63:2 (2019), 51–61
K. S. Speranskii, “Postroenie freima v prostranstve Khardi, opredelennom na dvumernom polidiske”, Vestn. SamU. Estestvennonauchn. ser., 25:2 (2019), 21–29
P. A. Terekhin, “Affine Riesz bases and the dual function”, Sb. Math., 207:9 (2016), 1287–1318
P. A. Terekhin, “Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$”, Izv. Math., 74:5 (2010), 993–1022
P. A. Terekhin, “Frames in Banach Spaces”, Funct. Anal. Appl., 44:3 (2010), 199–208