Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 9, Pages 1383–1402
DOI: https://doi.org/10.1070/SM2009v200n09ABEH004041
(Mi sm5655)
 

This article is cited in 7 scientific papers (total in 7 papers)

Banach frames in the affine synthesis problem

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: We consider the problem of representing functions $f\in L^p(\mathbb R^d)$ by a series in elements of the affine system
$$ \psi_{j,k}(x)=\lvert\det a_j\rvert^{1/2}\psi(a_jx-bk), \qquad j\in\mathbb N, \quad k\in\mathbb Z^d. $$
The corresponding representation theorems are established on the basis of the frame inequalities
$$ A\|g\|_q\le\|\{(g,\psi_{j,k})\}\|_Y\le B\|g\|_q $$
for the Fourier coefficients $\displaystyle(g,\psi_{j,k})=\int_{\mathbb R^d}g(x)\psi_{j,k}(x)\,dx$ of functions $g\in L^q(\mathbb R^d)$, $1/p+1/q=1$, where ${\|\cdot\|}_Y$ is the norm in some Banach space of number families $\{y_{j,k}\}$ and $0<A\le B<\infty$ are constants.
In particular, it is proved that if the integral of a function $\psi\in L^1\cap L^p(\mathbb R^d)$, $1<p<\infty$, is nonzero, so $\displaystyle\int_{\mathbb R^d}\psi(x)\,dx\ne0$ and the system of translates $\{\psi(x-bk):k\in\mathbb Z^d\}$ is $p$-Besselian in the space $L^p(\mathbb R^d)$, then for any function $f\in L^p(\mathbb R^d)$ we have the representation
$$ f=\sum_{j\in\mathbb N}\sum_{k\in\mathbb Z^d}c_{j,k}\psi_{j,k}, $$
where the coefficients satisfy the condition
$$ \sum_{j\in\mathbb N}\lvert\det a_j\rvert^{1/2-1/p} \biggl(\sum_{k\in\mathbb Z^d}|c_{j,k}|^p\biggr)^{1/p}<\infty. $$

Bibliography: 19 titles.
Keywords: affine systems, affine synthesis, frames in a Banach space.
Received: 16.04.2008 and 18.02.2009
Bibliographic databases:
UDC: 517.518+517.982
MSC: Primary 42C15; Secondary 41A65, 42C30, 42C40, 46B15, 46E35
Language: English
Original paper language: Russian
Citation: P. A. Terekhin, “Banach frames in the affine synthesis problem”, Sb. Math., 200:9 (2009), 1383–1402
Citation in format AMSBIB
\Bibitem{Ter09}
\by P.~A.~Terekhin
\paper Banach frames in the affine synthesis problem
\jour Sb. Math.
\yr 2009
\vol 200
\issue 9
\pages 1383--1402
\mathnet{http://mi.mathnet.ru/eng/sm5655}
\crossref{https://doi.org/10.1070/SM2009v200n09ABEH004041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583973}
\zmath{https://zbmath.org/?q=an:1187.42027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1383T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273971200005}
\elib{https://elibrary.ru/item.asp?id=19066156}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70450189742}
Linking options:
  • https://www.mathnet.ru/eng/sm5655
  • https://doi.org/10.1070/SM2009v200n09ABEH004041
  • https://www.mathnet.ru/eng/sm/v200/i9/p127
  • This publication is cited in the following 7 articles:
    1. Anton Baranov, Timur Batenev, “Representing Systems of Reproducing Kernels in Spaces of Analytic Functions”, Results Math, 78:4 (2023)  crossref
    2. Krishna K.M., Johnson P.S., “Frames For Metric Spaces”, Results Math., 77:1 (2022), 49  crossref  mathscinet  isi
    3. K. S. Speransky, P. A. Terekhin, “On existence of frames based on the Szegö kernel in the Hardy space”, Russian Math. (Iz. VUZ), 63:2 (2019), 51–61  mathnet  crossref  crossref  isi
    4. K. S. Speranskii, “Postroenie freima v prostranstve Khardi, opredelennom na dvumernom polidiske”, Vestn. SamU. Estestvennonauchn. ser., 25:2 (2019), 21–29  mathnet  crossref
    5. P. A. Terekhin, “Affine Riesz bases and the dual function”, Sb. Math., 207:9 (2016), 1287–1318  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. P. A. Terekhin, “Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$”, Izv. Math., 74:5 (2010), 993–1022  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. P. A. Terekhin, “Frames in Banach Spaces”, Funct. Anal. Appl., 44:3 (2010), 199–208  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:742
    Russian version PDF:266
    English version PDF:43
    References:81
    First page:16
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025