Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 4, Pages 593–639
DOI: https://doi.org/10.1070/sm2001v192n04ABEH000560
(Mi sm560)
 

This article is cited in 57 scientific papers (total in 57 papers)

Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback

A. V. Fursikov

M. V. Lomonosov Moscow State University
References:
Abstract: The problem of stabilizability from the boundary $\partial\Omega$ for a parabolic equation given in a bounded domain $\Omega\in\mathbb R^n$, consists in choosing a boundary condition (a control) such that the solution of the resulting mixed boundary-value problem tends as $t\to\infty$ to a given steady-state solution at a prescribed rate $\exp(-\sigma_0t)$. Furthermore, it is required that the control be with feedback, that is, that it react to unpredictable fluctuations of the system by suppressing the results of their action on the stabilizable solution. A new mathematical formulation of the concept of feedback is presented and then used in solving the problem of stabilizability of linear as well as quasi-linear parabolic equations by means of a control with feedback defined on part of the boundary.
Received: 31.08.2000
Russian version:
Matematicheskii Sbornik, 2001, Volume 192, Number 4, Pages 115–160
DOI: https://doi.org/10.4213/sm560
Bibliographic databases:
UDC: 517.977.1
MSC: Primary 35K15, 93D15, 93B52, 35K20; Secondary 35K55, 93B05, 35B37, 47A52, 49N35
Language: English
Original paper language: Russian
Citation: A. V. Fursikov, “Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback”, Mat. Sb., 192:4 (2001), 115–160; Sb. Math., 192:4 (2001), 593–639
Citation in format AMSBIB
\Bibitem{Fur01}
\by A.~V.~Fursikov
\paper Stabilizability of a~quasi-linear parabolic equation by means of a~boundary control with feedback
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 4
\pages 115--160
\mathnet{http://mi.mathnet.ru/sm560}
\crossref{https://doi.org/10.4213/sm560}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1834095}
\zmath{https://zbmath.org/?q=an:1019.93047}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 4
\pages 593--639
\crossref{https://doi.org/10.1070/sm2001v192n04ABEH000560}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169973700014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035648198}
Linking options:
  • https://www.mathnet.ru/eng/sm560
  • https://doi.org/10.1070/sm2001v192n04ABEH000560
  • https://www.mathnet.ru/eng/sm/v192/i4/p115
  • This publication is cited in the following 57 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:962
    Russian version PDF:344
    English version PDF:28
    References:101
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024