Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 3, Pages 455–478
DOI: https://doi.org/10.1070/sm2001v192n03ABEH000554
(Mi sm554)
 

This article is cited in 4 scientific papers (total in 4 papers)

Periodic differential equations with self-adjoint monodromy operator

V. I. Yudovich

Rostov State University
References:
Abstract: A linear differential equation $\dot u=A(t)u$ with $p$-periodic (generally speaking, unbounded) operator coefficient in a Euclidean or a Hilbert space $\mathbb H$ is considered. It is proved under natural constraints that the monodromy operator $U_p$ is self-adjoint and strictly positive if $A^*(-t)=A(t)$ for all $t\in\mathbb R$.
It is shown that Hamiltonian systems in the class under consideration are usually unstable and, if they are stable, then the operator $U_p$ reduces to the identity and all solutions are $p$-periodic.
For higher frequencies averaged equations are derived. Remarkably, high-frequency modulation may double the number of critical values.
General results are applied to rotational flows with cylindrical components of the velocity $a_r=a_z=0$, $a_\theta=\lambda c(t)r^\beta$, $\beta<-1$,   $c(t)$ is an even $p$-periodic function, and also to several problems of free gravitational convection of fluids in periodic fields.
Received: 14.11.1999 and 24.08.2000
Russian version:
Matematicheskii Sbornik, 2001, Volume 192, Number 3, Pages 137–160
DOI: https://doi.org/10.4213/sm554
Bibliographic databases:
UDC: 517.98
Language: English
Original paper language: Russian
Citation: V. I. Yudovich, “Periodic differential equations with self-adjoint monodromy operator”, Mat. Sb., 192:3 (2001), 137–160; Sb. Math., 192:3 (2001), 455–478
Citation in format AMSBIB
\Bibitem{Yud01}
\by V.~I.~Yudovich
\paper Periodic differential equations with self-adjoint monodromy operator
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 3
\pages 137--160
\mathnet{http://mi.mathnet.ru/sm554}
\crossref{https://doi.org/10.4213/sm554}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1836310}
\zmath{https://zbmath.org/?q=an:1024.34049}
\elib{https://elibrary.ru/item.asp?id=13371116}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 3
\pages 455--478
\crossref{https://doi.org/10.1070/sm2001v192n03ABEH000554}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169973700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035534770}
Linking options:
  • https://www.mathnet.ru/eng/sm554
  • https://doi.org/10.1070/sm2001v192n03ABEH000554
  • https://www.mathnet.ru/eng/sm/v192/i3/p137
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:701
    Russian version PDF:295
    English version PDF:17
    References:107
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024