Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 12, Pages 1773–1796
DOI: https://doi.org/10.1070/sm2000v191n12ABEH000527
(Mi sm527)
 

This article is cited in 3 scientific papers (total in 3 papers)

Almost periodic measure-valued functions

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences
References:
Abstract: Weakly almost periodic measure-valued functions $\mathbb R\ni t\to\mu[\,\cdot\,;t]$ taking values in the space $\mathscr M(U)$ of Borel measures of variable sign in a complete separable metric space $U$ are considered. A norm ${\|\cdot\|}_w$ introduced in the space $\mathscr M(U)$ defines a metric on the set of probability Borel measures that is equivalent to the Levy–Prokhorov metric. A connection between the almost periodicity of a measure-valued function $t\to\mu[\,\cdot\,;t]\in (\mathscr M(U),{\|\cdot\|}_w)$ and its weak almost periodicity (both in the sense of Bohr and in the sense of Stepanov) is established.
Received: 10.01.1999 and 13.04.2000
Bibliographic databases:
UDC: 517.9
MSC: Primary 42A75; Secondary 28A33
Language: English
Original paper language: Russian
Citation: L. I. Danilov, “Almost periodic measure-valued functions”, Sb. Math., 191:12 (2000), 1773–1796
Citation in format AMSBIB
\Bibitem{Dan00}
\by L.~I.~Danilov
\paper Almost periodic measure-valued functions
\jour Sb. Math.
\yr 2000
\vol 191
\issue 12
\pages 1773--1796
\mathnet{http://mi.mathnet.ru/eng/sm527}
\crossref{https://doi.org/10.1070/sm2000v191n12ABEH000527}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1829412}
\zmath{https://zbmath.org/?q=an:1038.42010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168023700008}
\elib{https://elibrary.ru/item.asp?id=13340248}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034340574}
Linking options:
  • https://www.mathnet.ru/eng/sm527
  • https://doi.org/10.1070/sm2000v191n12ABEH000527
  • https://www.mathnet.ru/eng/sm/v191/i12/p27
  • This publication is cited in the following 3 articles:
    1. L. I. Danilov, “O pochti periodicheskikh secheniyakh mnogoznachnykh otobrazhenii”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2008, no. 2, 34–41  mathnet  elib
    2. L. I. Danilov, “O ravnomernoi approksimatsii pochti periodicheskikh po Veilyu i pochti periodicheskikh po Bezikovichu funktsii”, Izv. IMI UdGU, 2006, no. 1(35), 33–48  mathnet
    3. L. I. Danilov, “O pochti periodicheskikh po Veilyu meroznachnykh funktsiyakh”, Izv. IMI UdGU, 2005, no. 1(31), 79–98  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:489
    Russian version PDF:239
    English version PDF:43
    References:80
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025