Abstract:
Pure subrings of finite rank in the Z-adic completion of the ring of integers and in its homomorphic images are considered. Certain properties of these rings are studied (existence of an identity element, decomposability into a direct sum of essentially indecomposable ideals, condition for embeddability into a csp-ring, etc.). Additive groups of these rings and conditions under which these rings are subrings of algebraic number fields are described.
Bibliography: 12 titles.
Keywords:
ring of universal integers, ring of pseudorational numbers, csp-ring, quotient divisible group.
\Bibitem{Tsa09}
\by A.~V.~Tsarev
\paper Pure subrings of the rings $\mathbb Z_\chi$
\jour Sb. Math.
\yr 2009
\vol 200
\issue 10
\pages 1537--1563
\mathnet{http://mi.mathnet.ru/eng/sm5235}
\crossref{https://doi.org/10.1070/SM2009v200n10ABEH004049}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584224}
\zmath{https://zbmath.org/?q=an:1184.13034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1537T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273971200013}
\elib{https://elibrary.ru/item.asp?id=19066091}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74949103530}
Linking options:
https://www.mathnet.ru/eng/sm5235
https://doi.org/10.1070/SM2009v200n10ABEH004049
https://www.mathnet.ru/eng/sm/v200/i10/p123
This publication is cited in the following 3 articles:
P. A. Krylov, A. A. Tuganbaev, A. V. Tsarev, “sp-Groups and their endomorphism rings”, J. Math. Sci. (N. Y.), 256:3 (2021), 299–340
O. Guseva, A. V. Tsarev, “Rings whose p-ranks do not exceed 1”, Sb. Math., 205:4 (2014), 476–487
P. A. Krylov, A. A. Tuganbaev, “Idempotent functors and localizations in categories of modules and Abelian groups”, J. Math. Sci., 183:3 (2012), 323–382