Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 11, Pages 1607–1633
DOI: https://doi.org/10.1070/sm2000v191n11ABEH000521
(Mi sm521)
 

On a non-local problem for irregular equations

V. V. Kornienko

A. Navoi Samarkand State University
References:
Abstract: We study the distribution on the complex plane $\mathbb C$ of the spectrum
$$ \sigma L=P\sigma L\cup C\sigma L\cup R\sigma L $$
of the operator $L$ generated by the closure in $H=\mathscr L_2(T_1,T_2)\otimes\mathfrak H$ of an irregular operation $a(t)D_t+A$ originally defined on the smooth functions $u(t)\colon[T_1,T_2]\to\mathfrak H$ that satisfy the non-local conditions: $\mu\cdot u(T_1)-u(T_2)=0$. Here $a(t)=\sum_{k=1}^2a_k|t|^{\alpha_k}\chi_k(t)$; $a_k\in\mathbb C$, $a_k\ne 0$; $\alpha_k\in\mathbb R$; $\chi_k(t)$ is the characteristic function of the interval with end-points $0,T_k$; $-\infty<T_1<0<T_2<+\infty$; $D_t\equiv d/dt$; $A$ is a model operator acting in a Hilbert space $\mathfrak H$; $\mu\in\overline{\mathbb C}$, $\mu\ne0,\infty$.
Received: 03.08.1999
Bibliographic databases:
UDC: 517.95
MSC: Primary 34L05; Secondary 34G10, 35M10
Language: English
Original paper language: Russian
Citation: V. V. Kornienko, “On a non-local problem for irregular equations”, Sb. Math., 191:11 (2000), 1607–1633
Citation in format AMSBIB
\Bibitem{Kor00}
\by V.~V.~Kornienko
\paper On a non-local problem for irregular equations
\jour Sb. Math.
\yr 2000
\vol 191
\issue 11
\pages 1607--1633
\mathnet{http://mi.mathnet.ru//eng/sm521}
\crossref{https://doi.org/10.1070/sm2000v191n11ABEH000521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1827511}
\zmath{https://zbmath.org/?q=an:1088.34539}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168023700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034340561}
Linking options:
  • https://www.mathnet.ru/eng/sm521
  • https://doi.org/10.1070/sm2000v191n11ABEH000521
  • https://www.mathnet.ru/eng/sm/v191/i11/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025