Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 10, Pages 1495–1519
DOI: https://doi.org/10.1070/SM2009v200n10ABEH004047
(Mi sm5097)
 

Analogues of Chernoff's theorem and the Lie-Trotter theorem

A. Yu. Neklyudov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: This paper is concerned with the abstract Cauchy problem $\dot x=\mathrm{A}x$, $x(0)=x_0\in\mathscr{D}(\mathrm{A})$, where $\mathrm{A}$ is a densely defined linear operator on a Banach space $\mathbf X$. It is proved that a solution $x(\,\cdot\,)$ of this problem can be represented as the weak limit $\lim_{n\to\infty}\{\mathrm F(t/n)^nx_0\}$, where the function $\mathrm F\colon[0,\infty)\mapsto\mathscr L(\mathrm X)$ satisfies the equality $\mathrm F'(0)y=\mathrm{A}y$, $y\in\mathscr{D}(\mathrm{A})$, for a natural class of operators. As distinct from Chernoff's theorem, the existence of a global solution to the Cauchy problem is not assumed. Based on this result, necessary and sufficient conditions are found for the linear operator $\mathrm{C}$ to be closable and for its closure to be the generator of a $C_0$-semigroup. Also, we obtain new criteria for the sum of two generators of $C_0$-semigroups to be the generator of a $C_0$-semigroup and for the Lie-Trotter formula to hold.
Bibliography: 13 titles.
Keywords: Chernoff's theorem; Lie-Trotter theorem; semigroup.
Received: 31.03.2008 and 16.12.2008
Bibliographic databases:
UDC: 517.983.23
MSC: Primary 47D06, 34G10; Secondary 47D03, 47D60
Language: English
Original paper language: Russian
Citation: A. Yu. Neklyudov, “Analogues of Chernoff's theorem and the Lie-Trotter theorem”, Sb. Math., 200:10 (2009), 1495–1519
Citation in format AMSBIB
\Bibitem{Nek09}
\by A.~Yu.~Neklyudov
\paper Analogues of Chernoff's theorem and the Lie-Trotter theorem
\jour Sb. Math.
\yr 2009
\vol 200
\issue 10
\pages 1495--1519
\mathnet{http://mi.mathnet.ru//eng/sm5097}
\crossref{https://doi.org/10.1070/SM2009v200n10ABEH004047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584222}
\zmath{https://zbmath.org/?q=an:1187.47035}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1495N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273971200011}
\elib{https://elibrary.ru/item.asp?id=19066089}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74949094847}
Linking options:
  • https://www.mathnet.ru/eng/sm5097
  • https://doi.org/10.1070/SM2009v200n10ABEH004047
  • https://www.mathnet.ru/eng/sm/v200/i10/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:634
    Russian version PDF:240
    English version PDF:16
    References:50
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024