Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 6, Pages 845–885
DOI: https://doi.org/10.1070/SM2009v200n06ABEH004021
(Mi sm5096)
 

This article is cited in 22 scientific papers (total in 22 papers)

Some problems in the theory of approximation of functions on compact homogeneous manifolds

S. S. Platonov

Petrozavodsk State University, Faculty of Mathematics
References:
Abstract: Problems in the theory of approximation of functions on an arbitrary compact rank-one symmetric space $M$ in the metric of $L_p$, $1\le p\le\infty$, are investigated. The approximating functions are generalized spherical polynomials, that is, linear combinations of eigenfunctions of the Beltrami-Laplace operator on $M$. Analogues of the direct Jackson theorems are proved for the modulus of smoothness (of arbitrary order) constructed by using the operator of spherical averaging. It is established that the modulus of smoothness and the $K$-functional constructed from the Sobolev-type space corresponding to the Beltrami-Laplace differential operator are equivalent.
Bibliography: 35 titles.
Keywords: approximation of functions, compact symmetric space, Jacobi polynomials, moduli of smoothness, Jackson's theorems.
Received: 28.03.2008 and 09.12.2008
Russian version:
Matematicheskii Sbornik, 2009, Volume 200, Number 6, Pages 67–108
DOI: https://doi.org/10.4213/sm5096
Bibliographic databases:
UDC: 517.518.8
MSC: Primary 41A17; Secondary 22E30, 43A85
Language: English
Original paper language: Russian
Citation: S. S. Platonov, “Some problems in the theory of approximation of functions on compact homogeneous manifolds”, Mat. Sb., 200:6 (2009), 67–108; Sb. Math., 200:6 (2009), 845–885
Citation in format AMSBIB
\Bibitem{Pla09}
\by S.~S.~Platonov
\paper Some problems in the theory of approximation of functions on compact homogeneous manifolds
\jour Mat. Sb.
\yr 2009
\vol 200
\issue 6
\pages 67--108
\mathnet{http://mi.mathnet.ru/sm5096}
\crossref{https://doi.org/10.4213/sm5096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553074}
\zmath{https://zbmath.org/?q=an:1186.41009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..845P}
\elib{https://elibrary.ru/item.asp?id=19066136}
\transl
\jour Sb. Math.
\yr 2009
\vol 200
\issue 6
\pages 845--885
\crossref{https://doi.org/10.1070/SM2009v200n06ABEH004021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269865000010}
\elib{https://elibrary.ru/item.asp?id=15295772}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350154818}
Linking options:
  • https://www.mathnet.ru/eng/sm5096
  • https://doi.org/10.1070/SM2009v200n06ABEH004021
  • https://www.mathnet.ru/eng/sm/v200/i6/p67
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:747
    Russian version PDF:270
    English version PDF:16
    References:95
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024