Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 9, Pages 1339–1373
DOI: https://doi.org/10.1070/sm2000v191n09ABEH000508
(Mi sm508)
 

This article is cited in 52 scientific papers (total in 52 papers)

Uniform convergence of Padé diagonal approximants for hyperelliptic functions

S. P. Suetin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The uniform convergence of Padé diagonal approximants is studied for functions in some class that is a natural generalization of hyperelliptic functions. The study is based on Nuttall's approach, which consists in the analysis of a certain Riemann boundary-value problem on the corresponding hyperelliptic Riemann surface. In terms of the solution of this problem, a strong asymptotic formula is obtained for non-Hermitian orthogonal polynomials that are the denominators of the Padé approximants. Under some fairly general assumptions, which are formulated in terms of the periods of the complex Green's function corresponding to the problem and which hold in “general position”, a version of the Baker–Gammel–Willes conjecture is proved.
Received: 28.10.1999 and 14.06.2000
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: Primary 41A21, 41A25, 41A27; Secondary 30F35
Language: English
Original paper language: Russian
Citation: S. P. Suetin, “Uniform convergence of Padé diagonal approximants for hyperelliptic functions”, Sb. Math., 191:9 (2000), 1339–1373
Citation in format AMSBIB
\Bibitem{Sue00}
\by S.~P.~Suetin
\paper Uniform convergence of Pad\'e diagonal approximants for hyperelliptic functions
\jour Sb. Math.
\yr 2000
\vol 191
\issue 9
\pages 1339--1373
\mathnet{http://mi.mathnet.ru//eng/sm508}
\crossref{https://doi.org/10.1070/sm2000v191n09ABEH000508}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1805599}
\zmath{https://zbmath.org/?q=an:0980.41015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166687700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341570}
Linking options:
  • https://www.mathnet.ru/eng/sm508
  • https://doi.org/10.1070/sm2000v191n09ABEH000508
  • https://www.mathnet.ru/eng/sm/v191/i9/p81
  • Related presentations:
    This publication is cited in the following 52 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:872
    Russian version PDF:281
    English version PDF:20
    References:111
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024