Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 8, Pages 1233–1242
DOI: https://doi.org/10.1070/sm2000v191n08ABEH000502
(Mi sm502)
 

This article is cited in 12 scientific papers (total in 13 papers)

Asymptotic behaviour of the Lebesgue constants of periodic interpolation splines with equidistant nodes

Yu. N. Subbotina, S. A. Telyakovskiib

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Associated with each continuous function $f$ of period 1 is the periodic spline $s_{r,n}(f)$ that has degree $r$, defect 1, nodes at the points $x_i=i/n$, $i=0,1,\dots,n-1$ and that interpolates $f$ at these points for $r$ odd and at the mid-points of the intervals $[x_i,x_{i+1}]$ for $r$ even.
For the corresponding Lebesgue constants $L_{r,n}$, that is the norms of the operators $f(x)\to s_{r,n}(f)$ from $C$ to $C$, the asymptotic formula
$$ L_{r,n}=\frac2\pi\log\min(r,n)+O(1), $$
is established, which holds uniformly in $r$ and $n$.
Received: 07.10.1999
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
MSC: 41A15, 41A05
Language: English
Original paper language: Russian
Citation: Yu. N. Subbotin, S. A. Telyakovskii, “Asymptotic behaviour of the Lebesgue constants of periodic interpolation splines with equidistant nodes”, Sb. Math., 191:8 (2000), 1233–1242
Citation in format AMSBIB
\Bibitem{SubTel00}
\by Yu.~N.~Subbotin, S.~A.~Telyakovskii
\paper Asymptotic behaviour of the~Lebesgue constants of periodic interpolation splines with equidistant nodes
\jour Sb. Math.
\yr 2000
\vol 191
\issue 8
\pages 1233--1242
\mathnet{http://mi.mathnet.ru//eng/sm502}
\crossref{https://doi.org/10.1070/sm2000v191n08ABEH000502}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1786420}
\zmath{https://zbmath.org/?q=an:0965.41006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165473200013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341559}
Linking options:
  • https://www.mathnet.ru/eng/sm502
  • https://doi.org/10.1070/sm2000v191n08ABEH000502
  • https://www.mathnet.ru/eng/sm/v191/i8/p131
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:539
    Russian version PDF:231
    English version PDF:18
    References:76
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024