Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 11, Pages 1587–1606
DOI: https://doi.org/10.1070/sm2000v191n11ABEH000496
(Mi sm496)
 

This article is cited in 5 scientific papers (total in 5 papers)

Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates

O. S. Dragoshanskii

M. V. Lomonosov Moscow State University
References:
Abstract: Let $f(\xi,\eta)$ be a function vanishing for $\xi^2+\eta^2>r^2$, where $r$ is sufficiently small, and with Fourier series (of the function considered in the square $(-\pi,\pi]^2$) or Fourier integral (of the function considered in the plane $\mathbb R^2$) convergent uniformly or almost everywhere over rectangles. It is shown that a rotation of the system of coordinates through $\pi/4$
$$ \begin{cases} \xi=(x-y)/\sqrt 2\,, \\ \eta=(y+x)/\sqrt 2 \end{cases} $$
can “damage” the convergence of the Fourier series or the Fourier integral of the resulting function.
Received: 10.01.2000
Bibliographic databases:
UDC: 517.51
MSC: 42B08, 42B10
Language: English
Original paper language: Russian
Citation: O. S. Dragoshanskii, “Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates”, Sb. Math., 191:11 (2000), 1587–1606
Citation in format AMSBIB
\Bibitem{Dra00}
\by O.~S.~Dragoshanskii
\paper Convergence of Fourier double series and Fourier integrals of functions on $T^2$ and $\mathbb R^2$ after rotations of coordinates
\jour Sb. Math.
\yr 2000
\vol 191
\issue 11
\pages 1587--1606
\mathnet{http://mi.mathnet.ru//eng/sm496}
\crossref{https://doi.org/10.1070/sm2000v191n11ABEH000496}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1827510}
\zmath{https://zbmath.org/?q=an:1018.42006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168023700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034340558}
Linking options:
  • https://www.mathnet.ru/eng/sm496
  • https://doi.org/10.1070/sm2000v191n11ABEH000496
  • https://www.mathnet.ru/eng/sm/v191/i11/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025