Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 7, Pages 1049–1073
DOI: https://doi.org/10.1070/sm2000v191n07ABEH000494
(Mi sm494)
 

This article is cited in 5 scientific papers (total in 5 papers)

Extension of entire functions of completely regular growth and right inverse to the operator of representation of analytic functions by quasipolynomial series

S. N. Melikhov

M. V. Lomonosov Moscow State University
References:
Abstract: Let $L$ be an entire function of one complex variable that has exponential type, completely regular growth, and whose conjugate diagram is equal to the sum of the closure of a bounded convex domain $G$ and a convex compact subset $K$ of $\mathbb C$. Criteria ensuring that the operator $R$ of the representation of analytic functions in $G$ by quasipolynomial series with zeros of the function $L$ as exponents has a continuous linear right inverse are established. These criteria are stated in terms of conformal maps of the unit disc onto the domain $G$ and of the exterior of the closed unit disc onto the exterior of $K$, and of extensions of the original function $L$ to an entire function $Q$ of two complex variables whose absolute value satisfies certain (upper) estimates. An analogue of the Leont'ev interpolation function defined by this extension $Q$ is used to obtain formulae for the continuous linear right inverse to the representation operator $R$.
Received: 12.07.1999
Bibliographic databases:
UDC: 517.537.7+517.983.22
MSC: Primary 30D99, 46E10, 30B50; Secondary 31C10, 32A15
Language: English
Original paper language: Russian
Citation: S. N. Melikhov, “Extension of entire functions of completely regular growth and right inverse to the operator of representation of analytic functions by quasipolynomial series”, Sb. Math., 191:7 (2000), 1049–1073
Citation in format AMSBIB
\Bibitem{Mel00}
\by S.~N.~Melikhov
\paper Extension of entire functions of completely regular growth and right inverse to the~operator of representation of analytic functions by quasipolynomial series
\jour Sb. Math.
\yr 2000
\vol 191
\issue 7
\pages 1049--1073
\mathnet{http://mi.mathnet.ru//eng/sm494}
\crossref{https://doi.org/10.1070/sm2000v191n07ABEH000494}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1809931}
\zmath{https://zbmath.org/?q=an:0995.30019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165473200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341535}
Linking options:
  • https://www.mathnet.ru/eng/sm494
  • https://doi.org/10.1070/sm2000v191n07ABEH000494
  • https://www.mathnet.ru/eng/sm/v191/i7/p105
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:686
    Russian version PDF:381
    English version PDF:33
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024