Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 7, Pages 1015–1031
DOI: https://doi.org/10.1070/sm2000v191n07ABEH000492
(Mi sm492)
 

This article is cited in 2 scientific papers (total in 2 papers)

On differential-geometric characteristics of Veronese curves

V. V. Konnov

Moscow State Pedagogical University
References:
Abstract: One part of the algebraizability problem for smooth submanifolds of a projective space is to find differential-geometric invariants of concrete algebraic varieties. In this paper, a property characterizing the Veronese curves $W^1_n$ is discovered and proved. A necessary and sufficient condition for a pair of smooth curves to lie on one Veronese curve is also found. Let $\gamma\times\gamma\setminus\operatorname{diag}(\gamma\times \gamma)$ be the manifold parametrizing pairs of distinct points on a curve $\gamma$, and let $\gamma _1\times \gamma _2$ be the manifold parametrizing pairs of points on two curves $\gamma_1$ and $\gamma_2$ embedded in a projective space $P^n$. A system of differential invariants $J_1,J_2,\dots,J_{n-1}$, is constructed on the manifolds $\gamma\times \gamma\setminus\operatorname{diag}(\gamma\times\gamma )$ and $\gamma_1\times \gamma_2$. These invariants have the following geometric interpretation. On the manifold $\gamma\times\gamma\setminus\operatorname{diag}(\gamma\times\gamma)$ the condition $J_1\equiv J_2\equiv\dots\equiv J_{n-1}\equiv1$ means that $\gamma$ is a Veronese curve $W^1_n$. On the manifold $\gamma_1\times\gamma_2$ the condition $J_1\equiv J_2\equiv\dots\equiv J_{n-1}\equiv1$ is equivalent to the fact that the curves $\gamma_1$ and $\gamma_2$ lie in one Veronese curve $W^1_n$.
Received: 22.02.1999
Bibliographic databases:
UDC: 514.76
MSC: Primary 53A20, 14H45; Secondary 53C10
Language: English
Original paper language: Russian
Citation: V. V. Konnov, “On differential-geometric characteristics of Veronese curves”, Sb. Math., 191:7 (2000), 1015–1031
Citation in format AMSBIB
\Bibitem{Kon00}
\by V.~V.~Konnov
\paper On differential-geometric characteristics of Veronese curves
\jour Sb. Math.
\yr 2000
\vol 191
\issue 7
\pages 1015--1031
\mathnet{http://mi.mathnet.ru//eng/sm492}
\crossref{https://doi.org/10.1070/sm2000v191n07ABEH000492}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1809929}
\zmath{https://zbmath.org/?q=an:1011.53009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165473200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341508}
Linking options:
  • https://www.mathnet.ru/eng/sm492
  • https://doi.org/10.1070/sm2000v191n07ABEH000492
  • https://www.mathnet.ru/eng/sm/v191/i7/p73
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:599
    Russian version PDF:207
    English version PDF:14
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024