Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 1, Pages 133–156
DOI: https://doi.org/10.1070/SM2009v200n01ABEH003989
(Mi sm4877)
 

This article is cited in 12 scientific papers (total in 12 papers)

The basis property of the Legendre polynomials in the variable exponent Lebesgue space $L^{p(x)}(-1,1)$

I. I. Sharapudinovab

a Daghestan Scientific Centre of the Russian Academy of Sciences
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences
References:
Abstract: The paper looks at the problem of determining the conditions on a variable exponent $p=p(x)$ so that the orthonormal system of Legendre polynomials $\{\widehat P_n(x)\}_{n=0}^\infty$ is a basis in the Lebesgue space $L^{p(x)}(-1,1)$ with norm
$$ \|f\|_{p(\,\cdot\,)}=\inf\biggl\{\alpha>0: \int_{-1}^1\biggl|{\frac{f(x)}{\alpha}}\biggr|^{p(x)}\,dx \le1\biggr\}. $$
Conditions on the exponent $p=p(x)$, that are definitive in a certain sense, are obtained and guarantee that the system $\{\widehat P_n(x)\}_{n=0}^\infty$ has the basis property in $L^{p(x)}(-1,1)$.
Bibliography: 31 titles.
Keywords: Lebesgue space, variable exponent, Legendre polynomial, basis.
Received: 17.03.2008 and 30.11.2008
Bibliographic databases:
UDC: 517.518.34
MSC: Primary 33A45; Secondary 42C10, 46E30
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “The basis property of the Legendre polynomials in the variable exponent Lebesgue space $L^{p(x)}(-1,1)$”, Sb. Math., 200:1 (2009), 133–156
Citation in format AMSBIB
\Bibitem{Sha09}
\by I.~I.~Sharapudinov
\paper The basis property of the Legendre polynomials in the variable
exponent Lebesgue space $L^{p(x)}(-1,1)$
\jour Sb. Math.
\yr 2009
\vol 200
\issue 1
\pages 133--156
\mathnet{http://mi.mathnet.ru//eng/sm4877}
\crossref{https://doi.org/10.1070/SM2009v200n01ABEH003989}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2499679}
\zmath{https://zbmath.org/?q=an:1177.33023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..133S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266224500005}
\elib{https://elibrary.ru/item.asp?id=19066084}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650915675}
Linking options:
  • https://www.mathnet.ru/eng/sm4877
  • https://doi.org/10.1070/SM2009v200n01ABEH003989
  • https://www.mathnet.ru/eng/sm/v200/i1/p137
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024