Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 6, Pages 849–881
DOI: https://doi.org/10.1070/sm2000v191n06ABEH000484
(Mi sm484)
 

This article is cited in 26 scientific papers (total in 27 papers)

On the problem of control synthesis: the Pontryagin alternating integral and the Hamilton–Jacobi equation

A. B. Kurzhanskii, N. B. Melnikov

M. V. Lomonosov Moscow State University
References:
Abstract: This paper deals with the problem of control synthesis under unknown, but bounded disturbances for a system with linear structure and hard (geometric) bounds on the control and the disturbance inputs. It emphasizes the role of set-valued methods and, in particular, of the Pontryagin multivalued alternating integral in the corresponding solution schemes. Close ties with the Hamilton–Jacobi techniques are discussed.
This paper also discusses an approach producing effective numerical solutions on the basis of appropriate ellipsoidal techniques. It presents a framework for going over from the abstract theory to numerically realizable ellipsoidal representations.
Received: 24.06.1999
Bibliographic databases:
UDC: 517.977
MSC: Primary 93C15, 93B50, 49J53; Secondary 49Lxx
Language: English
Original paper language: Russian
Citation: A. B. Kurzhanskii, N. B. Melnikov, “On the problem of control synthesis: the Pontryagin alternating integral and the Hamilton–Jacobi equation”, Sb. Math., 191:6 (2000), 849–881
Citation in format AMSBIB
\Bibitem{KurMel00}
\by A.~B.~Kurzhanskii, N.~B.~Melnikov
\paper On the problem of control synthesis: the Pontryagin alternating integral and the~Hamilton--Jacobi equation
\jour Sb. Math.
\yr 2000
\vol 191
\issue 6
\pages 849--881
\mathnet{http://mi.mathnet.ru//eng/sm484}
\crossref{https://doi.org/10.1070/sm2000v191n06ABEH000484}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1777570}
\zmath{https://zbmath.org/?q=an:0977.49022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089654100011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341484}
Linking options:
  • https://www.mathnet.ru/eng/sm484
  • https://doi.org/10.1070/sm2000v191n06ABEH000484
  • https://www.mathnet.ru/eng/sm/v191/i6/p69
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024