Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 5, Pages 759–777
DOI: https://doi.org/10.1070/sm2000v191n05ABEH000480
(Mi sm480)
 

This article is cited in 25 scientific papers (total in 25 papers)

Approximation of functions of variable smoothness by Fourier–Legendre sums

I. I. Sharapudinov

Daghestan State University
References:
Abstract: Assume that $0<\mu\leqslant 1$, and let $r\geqslant 1$ be an integer. Let $\Delta =\{a_1,\dots,a_l\}$, where the $a_i$ are points in the interval $(-1,1)$. The classes $S^rH^\mu_\Delta$ and $S^rH^\mu_\Delta(B)$ are introduced. These consist of functions with absolutely continuous $(r-1)$th derivative on $[-1,1]$ such that their $r$th and $(r+1)$th derivatives satisfy certain conditions outside the set $\Delta$. It is proved that for $0<\mu<1$ the Fourier–Legendre sums realize the best approximation in the classes $S^rH^\mu_\Delta(B)$. Using the Fourier–Legendre expansions, polynomials $\mathscr Y_{n+2r}$ of order $n+2r$ are constructed that possess the following property: for $0<\mu<1$ the $\nu$th derivative of the polynomial $\mathscr Y_{n+2r}$ approximates $f^{(\nu)}(x)$ $(f\in S^rH^\mu_\Delta)$ on $[-1,1]$ to within $O(n^{\nu+1-r-\mu})$, and the accuracy is of order $O(n^{\nu-r-\mu})$ outside $\Delta$.
Received: 10.06.1998 and 17.05.1999
Russian version:
Matematicheskii Sbornik, 2000, Volume 191, Number 5, Pages 143–160
DOI: https://doi.org/10.4213/sm480
Bibliographic databases:
UDC: 517.98
MSC: 42C10, 41A10
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Mat. Sb., 191:5 (2000), 143–160; Sb. Math., 191:5 (2000), 759–777
Citation in format AMSBIB
\Bibitem{Sha00}
\by I.~I.~Sharapudinov
\paper Approximation of functions of variable smoothness by Fourier--Legendre sums
\jour Mat. Sb.
\yr 2000
\vol 191
\issue 5
\pages 143--160
\mathnet{http://mi.mathnet.ru/sm480}
\crossref{https://doi.org/10.4213/sm480}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1773772}
\zmath{https://zbmath.org/?q=an:0971.42017}
\transl
\jour Sb. Math.
\yr 2000
\vol 191
\issue 5
\pages 759--777
\crossref{https://doi.org/10.1070/sm2000v191n05ABEH000480}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089654100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341459}
Linking options:
  • https://www.mathnet.ru/eng/sm480
  • https://doi.org/10.1070/sm2000v191n05ABEH000480
  • https://www.mathnet.ru/eng/sm/v191/i5/p143
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:605
    Russian version PDF:230
    English version PDF:15
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024