Abstract:
Let $V_i$, $i=1, 2, 3$, be a three-dimensional complex vector space. For the natural linear representation of the group $\operatorname{SL}(V_1)\times\operatorname{SL}(V_2)\times \operatorname{SL}(V_3)$ in the space $V_1\otimes V_2\otimes V_3$ the orbits are classified and generators of the algebra of invariants are described.
\Bibitem{Nur00}
\by A.~G.~Nurmiev
\paper Orbits and invariants of cubic matrices of order three
\jour Sb. Math.
\yr 2000
\vol 191
\issue 5
\pages 717--724
\mathnet{http://mi.mathnet.ru/eng/sm478}
\crossref{https://doi.org/10.1070/sm2000v191n05ABEH000478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1773770}
\zmath{https://zbmath.org/?q=an:0965.20029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089654100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341451}
Linking options:
https://www.mathnet.ru/eng/sm478
https://doi.org/10.1070/sm2000v191n05ABEH000478
https://www.mathnet.ru/eng/sm/v191/i5/p101
This publication is cited in the following 22 articles: