Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 5, Pages 683–715
DOI: https://doi.org/10.1070/sm2000v191n05ABEH000477
(Mi sm477)
 

This article is cited in 23 scientific papers (total in 23 papers)

Matrix analogues of the beta function and Plancherel's formula for Berezin kernel representations

Yu. A. Neretin

Moscow State Institute of Electronics and Mathematics
References:
Abstract: Ten series of matrix integrals (over non-compact Riemannian symmetric spaces) imitating the standard beta function are constructed. This is a broad generalization of Hua Loo Keng's integrals (1958) and Gindikin's B-integrals (1964). As a consequence Plancherel's formula for the Berezin kernel representations of classical groups is obtained in explicit form. Matrix models of non-compact Riemannian symmetric spaces are also discussed.
Received: 15.03.1999
Russian version:
Matematicheskii Sbornik, 2000, Volume 191, Number 5, Pages 67–100
DOI: https://doi.org/10.4213/sm477
Bibliographic databases:
UDC: 519.46
MSC: 33A75, 53C35
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “Matrix analogues of the beta function and Plancherel's formula for Berezin kernel representations”, Mat. Sb., 191:5 (2000), 67–100; Sb. Math., 191:5 (2000), 683–715
Citation in format AMSBIB
\Bibitem{Ner00}
\by Yu.~A.~Neretin
\paper Matrix analogues of the~beta function and Plancherel's formula for Berezin kernel representations
\jour Mat. Sb.
\yr 2000
\vol 191
\issue 5
\pages 67--100
\mathnet{http://mi.mathnet.ru/sm477}
\crossref{https://doi.org/10.4213/sm477}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1773769}
\zmath{https://zbmath.org/?q=an:0962.33002}
\transl
\jour Sb. Math.
\yr 2000
\vol 191
\issue 5
\pages 683--715
\crossref{https://doi.org/10.1070/sm2000v191n05ABEH000477}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089654100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034341444}
Linking options:
  • https://www.mathnet.ru/eng/sm477
  • https://doi.org/10.1070/sm2000v191n05ABEH000477
  • https://www.mathnet.ru/eng/sm/v191/i5/p67
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:687
    Russian version PDF:255
    English version PDF:15
    References:114
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024