Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 3, Pages 415–429
DOI: https://doi.org/10.1070/sm2000v191n03ABEH000466
(Mi sm466)
 

This article is cited in 19 scientific papers (total in 19 papers)

Finite-dimensional limiting dynamics for dissipative parabolic equations

A. V. Romanov

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
References:
Abstract: For a broad class of semilinear parabolic equations with compact attractor A in a Banach space E the problem of a description of the limiting phase dynamics (the dynamics on A) of a corresponding system of ordinary differential equations in RN is solved in purely topological terms. It is established that the limiting dynamics for a parabolic equation is finite-dimensional if and only if its attractor can be embedded in a sufficiently smooth finite-dimensional submanifold ME. Some other criteria are obtained for the finite dimensionality of the limiting dynamics:
  • a) the vector field of the equation satisfies a Lipschitz condition on A;
  • b) the phase semiflow extends on A to a Lipschitz flow;
  • c) the attractor A has a finite-dimensional Lipschitz Cartesian structure.

It is also shown that the vector field of a semilinear parabolic equation is always Holder on the attractor.
Received: 15.04.1998
Bibliographic databases:
UDC: 517.95
MSC: Primary 35K55, 58F12; Secondary 47H06, 58G11, 34D45, 35Q30
Language: English
Original paper language: Russian
Citation: A. V. Romanov, “Finite-dimensional limiting dynamics for dissipative parabolic equations”, Sb. Math., 191:3 (2000), 415–429
Citation in format AMSBIB
\Bibitem{Rom00}
\by A.~V.~Romanov
\paper Finite-dimensional limiting dynamics for dissipative parabolic equations
\jour Sb. Math.
\yr 2000
\vol 191
\issue 3
\pages 415--429
\mathnet{http://mi.mathnet.ru/eng/sm466}
\crossref{https://doi.org/10.1070/sm2000v191n03ABEH000466}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1773256}
\zmath{https://zbmath.org/?q=an:0963.37074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088115700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034354568}
Linking options:
  • https://www.mathnet.ru/eng/sm466
  • https://doi.org/10.1070/sm2000v191n03ABEH000466
  • https://www.mathnet.ru/eng/sm/v191/i3/p99
  • This publication is cited in the following 19 articles:
    1. A. V. Romanov, “Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations”, Math. Notes, 113:2 (2023), 267–273  mathnet  crossref  crossref
    2. Kostianko A., Zelik S., “Kwak Transform and Inertial Manifolds Revisited”, J. Dyn. Differ. Equ., 2021  crossref  mathscinet  isi
    3. Romanov V A., “Final Dynamics of Systems of Nonlinear Parabolic Equations on the Circle”, AIMS Math., 6:12 (2021), 13407–13422  crossref  isi
    4. Li X., Sun Ch., “Inertial Manifolds For a Singularly Non-Autonomous Semi-Linear Parabolic Equations”, Proc. Amer. Math. Soc., 149:12 (2021), 5275–5289  crossref  isi
    5. Kostianko A., “Bi-Lipschitz Mane Projectors and Finite-Dimensional Reduction For Complex Ginzburg-Landau Equation”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 476:2239 (2020), 20200144  crossref  mathscinet  isi
    6. Kostianko A., Zelik S., “Nertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part II: Periodic Boundary Conditions”, Commun. Pure Appl. Anal, 17:1 (2018), 285–317  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    7. Kostianko A., Zelik S., “Inertial Manifolds For 1D Reaction-Diffusion-Advection Systems. Part i: Dirichlet and Neumann Boundary Conditions”, Commun. Pure Appl. Anal, 16:6 (2017), 2357–2376  crossref  mathscinet  zmath  isi  scopus
    8. Robinson J.C., Sanchez-Gabites J.J., “On finite-dimensional global attractors of homeomorphisms”, Bull. London Math. Soc., 48:3 (2016), 483–498  crossref  mathscinet  zmath  isi  scopus
    9. Sanchez-Gabites J.J., “Arcs, balls and spheres that cannot be attractors in $\mathbb {R}^3$”, Trans. Am. Math. Soc., 368:5 (2016), 3591–3627  crossref  mathscinet  zmath  isi  scopus
    10. Anna Kostianko, Sergey Zelik, “Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions”, CPAA, 14:5 (2015), 2069  crossref  mathscinet  zmath  scopus  scopus  scopus
    11. Zelik S., “Inertial Manifolds and Finite-Dimensional Reduction For Dissipative PDEs”, Proc. R. Soc. Edinb. Sect. A-Math., 144:6 (2014), 1245–1327  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    12. de Moura E.P., Robinson J.C., “Log-Lipschitz Continuity of the Vector Field on the Attractor of Certain Parabolic Equations”, Dyn. Partial Differ. Equ., 11:3 (2014), 211–228  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    13. A. Eden, S. V. Zelik, V. K. Kalantarov, “Counterexamples to regularity of Mañé projections in the theory of attractors”, Russian Math. Surveys, 68:2 (2013), 199–226  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. J.C.. Robinson, “Attractors and Finite-Dimensional Behaviour in the 2D Navier–Stokes Equations”, ISRN Mathematical Analysis, 2013 (2013), 1  crossref  mathscinet
    15. de Moura E.P., Robinson J.C., Sanchez-Gabites J.J., “Embedding of Global Attractors and their Dynamics”, Proc Amer Math Soc, 139:10 (2011), 3497–3512  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    16. Langa, JA, “Fractal dimension of a random invariant set”, Journal de Mathematiques Pures et Appliquees, 85:2 (2006), 269  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    17. A. V. Romanov, “Effective finite parametrization in phase spaces of parabolic equations”, Izv. Math., 70:5 (2006), 1015–1029  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    18. Rezounenko, A, “A sufficient condition for the existence of approximate inertial manifolds containing the global attractor”, Comptes Rendus Mathematique, 334:11 (2002), 1015  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    19. A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations”, Izv. Math., 65:5 (2001), 977–1001  mathnet  crossref  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:604
    Russian version PDF:214
    English version PDF:30
    References:86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025