Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2000, Volume 191, Issue 3, Pages 381–414
DOI: https://doi.org/10.1070/sm2000v191n03ABEH000464
(Mi sm464)
 

This article is cited in 33 scientific papers (total in 33 papers)

Asymptotic behaviour of the partition function

V. Yu. Protasov

M. V. Lomonosov Moscow State University
References:
Abstract: Given a pair of positive integers $m$ and $d$ such that $2\leqslant m\leqslant d$, for integer $n\geqslant 0$ the quantity $b_{m,d}(n)$, called the partition function is considered; this by definition is equal to the cardinality of the set
$$ \biggl\{(a_0,a_1,\dots):n=\sum_ka_km^k,\ a_k\in\{0,\dots,d-1\},\ k\geqslant 0\biggr\}. $$
The properties of $b_{m,d}(n)$ and its asymptotic behaviour as $n\to\infty$ are studied. A geometric approach to this problem is put forward. It is shown that
$$ C_1n^{\lambda_1}\leqslant b_{m,d}(n)\leqslant C_2n^{\lambda_2}, $$
for sufficiently large $n$, where $C_1$ and $C_2$ are positive constants depending on $m$ and $d$, and $\lambda_1=\varliminf\limits_{n\to\infty}\dfrac{\log b(n)}{\log n}$ and $\lambda_2=\varlimsup\limits_{n\to\infty}\dfrac{\log b(n)}{\log n}$ are characteristics of the exponential growth of the partition function. For some pair $(m,d)$ the exponents $\lambda_1$ and $\lambda_2$ are calculated as the logarithms of certain algebraic numbers; for other pairs the problem is reduced to finding the joint spectral radius of a suitable collection of finite-dimensional linear operators. Estimates of the growth exponents and the constants $C_1$ and $C_2$ are obtained.
Received: 23.06.1999
Bibliographic databases:
UDC: 511
MSC: Primary 11P81; Secondary 47A13
Language: English
Original paper language: Russian
Citation: V. Yu. Protasov, “Asymptotic behaviour of the partition function”, Sb. Math., 191:3 (2000), 381–414
Citation in format AMSBIB
\Bibitem{Pro00}
\by V.~Yu.~Protasov
\paper Asymptotic behaviour of the~partition function
\jour Sb. Math.
\yr 2000
\vol 191
\issue 3
\pages 381--414
\mathnet{http://mi.mathnet.ru//eng/sm464}
\crossref{https://doi.org/10.1070/sm2000v191n03ABEH000464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1773255}
\zmath{https://zbmath.org/?q=an:1004.11056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088115700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034338840}
Linking options:
  • https://www.mathnet.ru/eng/sm464
  • https://doi.org/10.1070/sm2000v191n03ABEH000464
  • https://www.mathnet.ru/eng/sm/v191/i3/p65
  • This publication is cited in the following 33 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025