Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 9, Pages 1263–1353
DOI: https://doi.org/10.1070/SM2008v199n09ABEH003962
(Mi sm4529)
 

This article is cited in 47 scientific papers (total in 47 papers)

Maximally symmetric cell decompositions of surfaces and their coverings

E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Regular (maximally symmetric) cell decompositions of closed oriented 2-dimensional surfaces (that is, regular maps or regular abstract polyhedra) are considered. These objects are also known as maximally symmetric oriented atoms. An atom is reducible if it is a branched covering of another atom, with branching points at vertices of the decomposition and/or the centres of faces. The following two problems have arisen in the theory of integrable Hamiltonian systems: describe the irreducible maximally symmetric atoms; describe all the maximally symmetric atoms covering a fixed irreducible maximally symmetric atom. In this paper, these problems are solved in important cases. As applications, the following maximally symmetric atoms are listed: the atoms containing at most 30 edges; the atoms containing at most six faces; the atoms containing $p$ or $2p$ edges, where $p$ is a prime.
Bibliography: 52 titles.
Received: 28.02.2008
Bibliographic databases:
Document Type: Article
UDC: 515.164.8+519.177.3
MSC: Primary 57M20, 57M12; Secondary 37J35, 70H06
Language: English
Original paper language: Russian
Citation: E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353
Citation in format AMSBIB
\Bibitem{KudNikFom08}
\by E.~A.~Kudryavtseva, I.~M.~Nikonov, A.~T.~Fomenko
\paper Maximally symmetric cell decompositions of surfaces
and their coverings
\jour Sb. Math.
\yr 2008
\vol 199
\issue 9
\pages 1263--1353
\mathnet{http://mi.mathnet.ru//eng/sm4529}
\crossref{https://doi.org/10.1070/SM2008v199n09ABEH003962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2466854}
\zmath{https://zbmath.org/?q=an:1163.37018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1263K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262711500001}
\elib{https://elibrary.ru/item.asp?id=20359353}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149137190}
Linking options:
  • https://www.mathnet.ru/eng/sm4529
  • https://doi.org/10.1070/SM2008v199n09ABEH003962
  • https://www.mathnet.ru/eng/sm/v199/i9/p3
  • This publication is cited in the following 47 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025