Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 11, Pages 1649–1686
DOI: https://doi.org/10.1070/SM2008v199n11ABEH003976
(Mi sm4506)
 

This article is cited in 3 scientific papers (total in 3 papers)

Elliptic and weakly coercive systems of operators in Sobolev spaces

D. V. Lymanskyia, M. M. Malamudb

a Donetsk National University
b Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: It is known that an elliptic system $\{P_j(x,D)\}_1^N$ of order $l$ is weakly coercive in $\overset{\circ}{W}{}^l_{\!\infty}(\mathbb R^n)$, that is, all differential monomials of order $\leqslant l-1$ on $C_0^\infty(\mathbb R^n)$-functions are subordinated to this system in the $L^\infty$-norm. Conditions for the converse result are found and other properties of weakly coercive systems are investigated.
An analogue of the de Leeuw-Mirkil theorem is obtained for operators with variable coefficients: it is shown that an operator $P(x,D)$ of $n\geqslant 3$ variables with constant principal part is weakly coercive in $\overset{\circ}{W}{}^l_{\!\infty}(\mathbb R^n)$ if and only if it is elliptic. A similar result is obtained for systems $\{P_j(D)\}_1^N$ with constant coefficients under the condition $n\geqslant 2N+1$ and with several restrictions on the symbols $P_j(\xi)$.
A complete description of differential polynomials of two variables which are weakly coercive in $\overset{\circ}{W}{}^l_{\!\infty}(\mathbb R^2)$ is given. Wide classes of systems with constant coefficients which are weakly coercive in $\overset{\circ}{W}{}^l_{\!\infty}(\mathbb R^n)$, but non-elliptic are constructed.
Bibliography: 32 titles.
Received: 15.01.2008
Russian version:
Matematicheskii Sbornik, 2008, Volume 199, Number 11, Pages 75–112
DOI: https://doi.org/10.4213/sm4506
Bibliographic databases:
UDC: 517.983.36
MSC: 35J45, 47F05
Language: English
Original paper language: Russian
Citation: D. V. Lymanskyi, M. M. Malamud, “Elliptic and weakly coercive systems of operators in Sobolev spaces”, Mat. Sb., 199:11 (2008), 75–112; Sb. Math., 199:11 (2008), 1649–1686
Citation in format AMSBIB
\Bibitem{LymMal08}
\by D.~V.~Lymanskyi, M.~M.~Malamud
\paper Elliptic and weakly coercive systems of operators in Sobolev spaces
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 11
\pages 75--112
\mathnet{http://mi.mathnet.ru/sm4506}
\crossref{https://doi.org/10.4213/sm4506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2485376}
\zmath{https://zbmath.org/?q=an:1189.47044}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1649L}
\elib{https://elibrary.ru/item.asp?id=20425510}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 11
\pages 1649--1686
\crossref{https://doi.org/10.1070/SM2008v199n11ABEH003976}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264258100004}
\elib{https://elibrary.ru/item.asp?id=14659576}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149123043}
Linking options:
  • https://www.mathnet.ru/eng/sm4506
  • https://doi.org/10.1070/SM2008v199n11ABEH003976
  • https://www.mathnet.ru/eng/sm/v199/i11/p75
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:630
    Russian version PDF:248
    English version PDF:16
    References:87
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024