Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 6, Pages 899–921
DOI: https://doi.org/10.1070/SM2009v200n06ABEH004023
(Mi sm4501)
 

This article is cited in 11 scientific papers (total in 11 papers)

The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)

G. Haghighatdoosta, A. A. Oshemkovb

a Department of Fundamental Sciences, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Several new integrable cases for Euler's equations on some six-dimensional Lie algebras were found by Sokolov in 2004. In this paper we study topological properties of one of these integrable cases on the Lie algebra so(4). In particular, for the system under consideration the bifurcation diagrams of the momentum mapping are constructed and all Fomenko invariants are calculated. Thereby, the classification of isoenergy surfaces for this system up to the rough Liouville equivalence is obtained.
Bibliography: 9 titles.
Keywords: integrable Hamiltonian systems, momentum mapping, bifurcation diagram, topological invariants.
Received: 25.12.2007 and 16.03.2009
Bibliographic databases:
UDC: 517.938.5
MSC: 37J35, 70H06
Language: English
Original paper language: Russian
Citation: G. Haghighatdoost, A. A. Oshemkov, “The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)”, Sb. Math., 200:6 (2009), 899–921
Citation in format AMSBIB
\Bibitem{HagOsh09}
\by G.~Haghighatdoost, A.~A.~Oshemkov
\paper The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)
\jour Sb. Math.
\yr 2009
\vol 200
\issue 6
\pages 899--921
\mathnet{http://mi.mathnet.ru/eng/sm4501}
\crossref{https://doi.org/10.1070/SM2009v200n06ABEH004023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553076}
\zmath{https://zbmath.org/?q=an:1179.37079}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..899H}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269865000012}
\elib{https://elibrary.ru/item.asp?id=19066138}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350158195}
Linking options:
  • https://www.mathnet.ru/eng/sm4501
  • https://doi.org/10.1070/SM2009v200n06ABEH004023
  • https://www.mathnet.ru/eng/sm/v200/i6/p119
  • This publication is cited in the following 11 articles:
    1. E. S. Agureeva, V. A. Kibkalo, “Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra e(2,1)”, Moscow University Mathematics Bulletin, 79:5 (2024), 207–222  mathnet  crossref  crossref  elib
    2. V. A. Kibkalo, “Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat”, Moscow University Mathematics Bulletin, 78:1 (2023), 28–36  mathnet  crossref  crossref  zmath  elib
    3. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. V. A. Kibkalo, “Pervyi klass Appelrota psevdoevklidovoi sistemy Kovalevskoi”, Chebyshevskii sb., 24:1 (2023), 69–88  mathnet  crossref
    5. Anatoly T. Fomenko, Kirill I. Solodskih, Understanding Complex Systems, Modern Mathematics and Mechanics, 2019, 13  crossref
    6. Pavel E. Ryabov, Andrej A. Oshemkov, Sergei V. Sokolov, “The Integrable Case of Adler – van Moerbeke. Discriminant Set and Bifurcation Diagram”, Regul. Chaotic Dyn., 21:5 (2016), 581–592  mathnet  crossref  mathscinet  zmath
    7. Rasoul Akbarzadeh, Ghorbanali Haghighatdoost, “The Topology of Liouville Foliation for the Borisov–Mamaev–Sokolov Integrable Case on the Lie Algebra so(4)”, Regul. Chaotic Dyn., 20:3 (2015), 317–344  mathnet  crossref  mathscinet  zmath  adsnasa
    8. I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra so(3,1)”, Sb. Math., 205:8 (2014), 1107–1132  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. D. V. Novikov, “Topological features of the Sokolov integrable case on the Lie algebra e(3)”, Sb. Math., 202:5 (2011), 749–781  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Novikov D.V., “The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra so(3,1)”, Moscow Univ. Math. Bull., 66:4 (2011), 181–184  mathnet  crossref  mathscinet  mathscinet  zmath  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:767
    Russian version PDF:245
    English version PDF:21
    References:75
    First page:23
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025