Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 12, Pages 1715–1747
DOI: https://doi.org/10.1070/sm1999v190n12ABEH000442
(Mi sm442)
 

This article is cited in 4 scientific papers (total in 4 papers)

$L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials

G. M. Gubreev

South Ukrainian State K. D. Ushynsky Pedagogical University
References:
Abstract: A class of unbounded operators with discrete spectrum in a separable Hilbert space is distinguished, in which the property of being the generator of an $L_2$-stable semigroup is equivalent to the similarity to the Sz.-Nadya–Foiash scalar model. In the proof of this result a connection with the theory of Muckenhoupt weights is established. A criterion for the similarity of a dissipative unicellular operator to the simplest integration operator is also derived. The notion of a quasiexponential, an abstract analogue of an exponential, is introduced. As an application, a description of all unconditional bases in the Hilbert space consisting of values of a quasiexponential is presented.
Received: 01.02.1999
Bibliographic databases:
UDC: 517.986+517.444+517.5
MSC: Primary 47B99, 47B44, 47G10; Secondary 46C10, 42A50
Language: English
Original paper language: Russian
Citation: G. M. Gubreev, “$L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials”, Sb. Math., 190:12 (1999), 1715–1747
Citation in format AMSBIB
\Bibitem{Gub99}
\by G.~M.~Gubreev
\paper $L_2$-stable semigroups, Muckenhoupt weights, and unconditional bases of values of quasi-exponentials
\jour Sb. Math.
\yr 1999
\vol 190
\issue 12
\pages 1715--1747
\mathnet{http://mi.mathnet.ru//eng/sm442}
\crossref{https://doi.org/10.1070/sm1999v190n12ABEH000442}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1735246}
\zmath{https://zbmath.org/?q=an:0956.47018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085909400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033235837}
Linking options:
  • https://www.mathnet.ru/eng/sm442
  • https://doi.org/10.1070/sm1999v190n12ABEH000442
  • https://www.mathnet.ru/eng/sm/v190/i12/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:515
    Russian version PDF:224
    English version PDF:21
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024