Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 11, Pages 1559–1570
DOI: https://doi.org/10.1070/sm1999v190n11ABEH000437
(Mi sm437)
 

This article is cited in 18 scientific papers (total in 18 papers)

$G$-identities of non-associative algebras

Yu. A. Bahturina, M. V. Zaiceva, S. K. Sehgalb

a M. V. Lomonosov Moscow State University
b University of Alberta
References:
Abstract: The main class of algebras considered in this paper is the class of algebras of Lie type. This class includes, in particular, associative algebras, Lie algebras and superalgebras, Leibniz algebras, quantum Lie algebras, and many others. We prove that if a finite group $G$ acts on such an algebra $A$ by automorphisms and anti-automorphisms and $A$ satisfies an essential $G$-identity, then $A$ satisfies an ordinary identity of degree bounded by a function that depends on the degree of the original identity and the order of $G$. We show in the case of ordinary Lie algebras that if $L$ is a Lie algebra, a finite group $G$ acts on $L$ by automorphisms and anti-automorphisms, and the order of $G$ is coprime to the characteristic of the field, then the existence of an identity on skew-symmetric elements implies the existence of an identity on the whole of $L$, with the same kind of dependence between the degrees of the identities. Finally, we generalize Amitsur's theorem on polynomial identities in associative algebras with involution to the case of alternative algebras with involution.
Received: 17.03.1999
Russian version:
Matematicheskii Sbornik, 1999, Volume 190, Number 11, Pages 3–14
DOI: https://doi.org/10.4213/sm437
Bibliographic databases:
UDC: 512.8
MSC: Primary 17A36; Secondary 16R50, 16W10, 16W20, 17A70, 17B01, 17B40, 17B70, 1
Language: English
Original paper language: Russian
Citation: Yu. A. Bahturin, M. V. Zaicev, S. K. Sehgal, “$G$-identities of non-associative algebras”, Mat. Sb., 190:11 (1999), 3–14; Sb. Math., 190:11 (1999), 1559–1570
Citation in format AMSBIB
\Bibitem{BahZaiSeh99}
\by Yu.~A.~Bahturin, M.~V.~Zaicev, S.~K.~Sehgal
\paper $G$-identities of non-associative algebras
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 11
\pages 3--14
\mathnet{http://mi.mathnet.ru/sm437}
\crossref{https://doi.org/10.4213/sm437}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1735136}
\zmath{https://zbmath.org/?q=an:0939.17002}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 11
\pages 1559--1570
\crossref{https://doi.org/10.1070/sm1999v190n11ABEH000437}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085909400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033235829}
Linking options:
  • https://www.mathnet.ru/eng/sm437
  • https://doi.org/10.1070/sm1999v190n11ABEH000437
  • https://www.mathnet.ru/eng/sm/v190/i11/p3
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:521
    Russian version PDF:214
    English version PDF:11
    References:72
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024