Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 9, Pages 1325–1352
DOI: https://doi.org/10.1070/sm1999v190n09ABEH000427
(Mi sm427)
 

This article is cited in 19 scientific papers (total in 19 papers)

Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients

L. S. Pankratova, I. D. Chueshovb

a B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
b V. N. Karazin Kharkiv National University
References:
Abstract: A non-linear initial-boundary-value problem for a hyperbolic equation with dissipation is considered in a bounded domain $\Omega$
$$ u^\varepsilon _{tt}+\delta u^\varepsilon _t -\operatorname {div}\bigl (a^\varepsilon (x)\nabla u^\varepsilon\bigr ) +f(u^\varepsilon)=h^\varepsilon (x), $$
where $\delta>0$ and the coefficient $a^\varepsilon (x)$ is of order $\varepsilon ^{3+\gamma}$ $(0\leqslant \gamma<1)$ on the union of spherical annuli of thickness $d_\varepsilon=d\varepsilon^{2+\gamma}$. The annuli are periodically, with period $\varepsilon$, distributed in a bounded domain $\Omega$. Outside the union of the annuli $a^\varepsilon (x)\equiv 1$. The asymptotic behaviour of the solutions and the global attractor of the problem are studied as $\varepsilon \to 0$. It is shown that the homogenization of the problem on each finite time interval leads to a system consisting of a non-linear hyperbolic equation and an ordinary second-order differential equation (with respect to $t$). It is also shown that the global attractor of the initial problem approaches in a certain sense a weak global attractor of the homogenized problem.
Received: 05.10.1998
Russian version:
Matematicheskii Sbornik, 1999, Volume 190, Number 9, Pages 99–126
DOI: https://doi.org/10.4213/sm427
Bibliographic databases:
UDC: 517.953
MSC: 35B27, 35B40, 35L70
Language: English
Original paper language: Russian
Citation: L. S. Pankratov, I. D. Chueshov, “Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients”, Mat. Sb., 190:9 (1999), 99–126; Sb. Math., 190:9 (1999), 1325–1352
Citation in format AMSBIB
\Bibitem{PanChu99}
\by L.~S.~Pankratov, I.~D.~Chueshov
\paper Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 9
\pages 99--126
\mathnet{http://mi.mathnet.ru/sm427}
\crossref{https://doi.org/10.4213/sm427}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1725227}
\zmath{https://zbmath.org/?q=an:0940.35029}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 9
\pages 1325--1352
\crossref{https://doi.org/10.1070/sm1999v190n09ABEH000427}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085043300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033236627}
Linking options:
  • https://www.mathnet.ru/eng/sm427
  • https://doi.org/10.1070/sm1999v190n09ABEH000427
  • https://www.mathnet.ru/eng/sm/v190/i9/p99
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:538
    Russian version PDF:200
    English version PDF:17
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024