Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 9, Pages 1229–1245
DOI: https://doi.org/10.1070/sm1999v190n09ABEH000424
(Mi sm424)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the convergence of induced measures in variation

D. E. Aleksandrovaa, V. I. Bogacheva, A. Yu. Pilipenkob

a M. V. Lomonosov Moscow State University
b Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: Let $F_j$, $F\colon\mathbb R^n\to\mathbb R^n$ be measurable maps such that $F_j\to F$ and $\partial _{x_i}F_j\to\partial _{x_i}F$ in measure on a measurable set $E$. Conditions ensuring that the images of Lebesgue measure $\lambda \big|_E$ on $E$ under the maps $F_j$ converge in variation to the image of $\lambda \big |_E$ under $F$ are presented. For example, one sufficient condition is the convergence of the $F_j$ to $F$ in a Sobolev space $W^{p,1}(\mathbb R^n,\mathbb R^n)$ with $p\geqslant n$ and the inclusion $E\subset \{\det DF\ne 0\}$. Similar results are obtained for maps between Riemannian manifolds and maps from infinite dimensional spaces.
Received: 31.08.1998 and 25.03.1999
Bibliographic databases:
UDC: 517.5+519.2
MSC: Primary 28A33; Secondary 26B05, 28A20
Language: English
Original paper language: Russian
Citation: D. E. Aleksandrova, V. I. Bogachev, A. Yu. Pilipenko, “On the convergence of induced measures in variation”, Sb. Math., 190:9 (1999), 1229–1245
Citation in format AMSBIB
\Bibitem{AleBogPil99}
\by D.~E.~Aleksandrova, V.~I.~Bogachev, A.~Yu.~Pilipenko
\paper On the convergence of induced measures in variation
\jour Sb. Math.
\yr 1999
\vol 190
\issue 9
\pages 1229--1245
\mathnet{http://mi.mathnet.ru//eng/sm424}
\crossref{https://doi.org/10.1070/sm1999v190n09ABEH000424}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1725224}
\zmath{https://zbmath.org/?q=an:0973.60063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000085043300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033236625}
Linking options:
  • https://www.mathnet.ru/eng/sm424
  • https://doi.org/10.1070/sm1999v190n09ABEH000424
  • https://www.mathnet.ru/eng/sm/v190/i9/p3
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025