Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 6, Pages 803–834
DOI: https://doi.org/10.1070/sm1999v190n06ABEH000411
(Mi sm411)
 

This article is cited in 13 scientific papers (total in 13 papers)

Regular attractor for a non-linear elliptic system in a cylindrical domain

M. I. Vishika, S. V. Zelikb

a Institute for Information Transmission Problems, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University
References:
Abstract: The system of second-order elliptic equations
\begin{equation} a(\partial_t^2u+\Delta_xu)-\gamma\partial_tu-f(u)=g(t), \quad u\big|_{\partial\omega}=0, \enskip u\big|_{t=0}=u_0, \enskip (t,x)\in\Omega _+, \tag{1} \end{equation}
is considered in the half-cylinder $\Omega_+=\mathbb R_+\times\omega$, $\omega\subset\mathbb R^n$. Here $u=(u^1,\dots,u^k)$ is an unknown vector-valued function, $a$ and $\gamma$ are fixed positive-definite self-adjoint $(k\times k)$-matrices, $f$ and $g(t)=g(t,x)$ are fixed functions. It is proved under certain natural conditions on the matrices $a$ and $\gamma$, the non-linear function $f$, and the right-hand side $g$ that the boundary-value problem (1) has a unique solution in the space $W^{2,p}_{\mathrm{loc}}(\Omega_+,\mathbb R^k)$, $p>(n+1)/2$, that is bounded as $t\to\infty$. Moreover, it is established that the problem (1) is equivalent in the class of such solutions to an evolution problem in the space of “initial data” $u_0\in V_0\equiv\operatorname{Tr}_{t=0}W^{2,p}_{\mathrm{loc}}(\Omega_+,\mathbb R^k)$. In the potential case $(f=\nabla _x P$,  $g(t,x)\equiv g(x))$ it is shown that the semigroup $S_t\colon V_0\to V_0$ generated by (1) possesses an attractor in the space $V_0$ which is generically the union of finite-dimensional unstable manifolds $\mathscr M^+(z_i)$ corresponding to the equilibria $z_i$ of $S_t$ $(S_tz_i=z_i)$. In addition, an explicit formula for the dimensions of these manifolds is obtained.
Received: 20.11.1998
Bibliographic databases:
UDC: 517.95
MSC: Primary 35J60; Secondary 35B40
Language: English
Original paper language: Russian
Citation: M. I. Vishik, S. V. Zelik, “Regular attractor for a non-linear elliptic system in a cylindrical domain”, Sb. Math., 190:6 (1999), 803–834
Citation in format AMSBIB
\Bibitem{VisZel99}
\by M.~I.~Vishik, S.~V.~Zelik
\paper Regular attractor for a~non-linear elliptic system in a~cylindrical domain
\jour Sb. Math.
\yr 1999
\vol 190
\issue 6
\pages 803--834
\mathnet{http://mi.mathnet.ru//eng/sm411}
\crossref{https://doi.org/10.1070/sm1999v190n06ABEH000411}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1719581}
\zmath{https://zbmath.org/?q=an:0940.35085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083433500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033241007}
Linking options:
  • https://www.mathnet.ru/eng/sm411
  • https://doi.org/10.1070/sm1999v190n06ABEH000411
  • https://www.mathnet.ru/eng/sm/v190/i6/p23
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:624
    Russian version PDF:215
    English version PDF:24
    References:77
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024