Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 5, Pages 753–770
DOI: https://doi.org/10.1070/SM1995v186n05ABEH000041
(Mi sm41)
 

This article is cited in 7 scientific papers (total in 7 papers)

Tartar's method of compensated compactness in averaging the spectrum of a mixed problem for an elliptic equation in a perforated domain with third boundary condition

S. E. Pastukhova
References:
Abstract: We study the problem described in the title of this paper in the domain $\Omega_\varepsilon$ obtained from a domain $\Omega\in\mathbb R^d$ by periodic perforation with period $\varepsilon Q$, where $Q$ is the unit cube in $\mathbb R^d$. For this problem we use the method of compensated compactness to obtain the first two terms of the asymptotics of the $k$-th eigenvalue in powers of $\varepsilon$ as $\varepsilon\to0$: $\lambda_{\varepsilon,k}=\varepsilon^{-1}\Lambda+\lambda_k+\dotsb$, where $\Lambda$ is a constant independent of $k$ and $\lambda_k$ is the $k$-th eigenvalue of the averaged problem (which turns out to be the Dirichlet problem in the domain $\Omega$) for $k\in\mathbb N$.
Received: 07.07.1994
Bibliographic databases:
UDC: 517.946.9
MSC: Primary 35J55; Secondary 35P20
Language: English
Original paper language: Russian
Citation: S. E. Pastukhova, “Tartar's method of compensated compactness in averaging the spectrum of a mixed problem for an elliptic equation in a perforated domain with third boundary condition”, Sb. Math., 186:5 (1995), 753–770
Citation in format AMSBIB
\Bibitem{Pas95}
\by S.~E.~Pastukhova
\paper Tartar's method of compensated compactness in averaging the~spectrum of a~mixed problem for an~elliptic equation in a~perforated domain with third boundary condition
\jour Sb. Math.
\yr 1995
\vol 186
\issue 5
\pages 753--770
\mathnet{http://mi.mathnet.ru//eng/sm41}
\crossref{https://doi.org/10.1070/SM1995v186n05ABEH000041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1341089}
\zmath{https://zbmath.org/?q=an:0836.35015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TC19700008}
Linking options:
  • https://www.mathnet.ru/eng/sm41
  • https://doi.org/10.1070/SM1995v186n05ABEH000041
  • https://www.mathnet.ru/eng/sm/v186/i5/p127
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024