Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 6, Pages 859–885
DOI: https://doi.org/10.1070/sm1999v190n06ABEH000409
(Mi sm409)
 

This article is cited in 16 scientific papers (total in 16 papers)

Absolutely minimal extensions of functions on metric spaces

V. A. Milman

Institute of Technical Cybernetics, National Academy of Sciences of Belarus
References:
Abstract: Extensions of a real-valued function from the boundary $\partial X_0$ of an open subset $X_0$ of a metric space ${(X,d)}$ to $X_0$ are discussed. For the broad class of initial data coming under discussion (linearly bounded functions) locally Lipschitz extensions to $X_0$ that preserve localized moduli of continuity are constructed. In the set of these extensions an absolutely minimal extension is selected, which was considered before by Aronsson for Lipschitz initial functions in the case $X_0\subset\mathbb R^n$. An absolutely minimal extension can be regarded as an $\infty$-harmonic function, that is, a limit of $p$-harmonic functions as $p\to+\infty$. The proof of the existence of absolutely minimal extensions in a metric space with intrinsic metric is carried out by the Perron method. To this end, $\infty$-subharmonic, $\infty$-superharmonic, and $\infty$-harmonic functions on a metric space are defined and their properties are established.
Received: 06.08.1998
Bibliographic databases:
UDC: 517.5
MSC: 54E35, 54C20, 26E99
Language: English
Original paper language: Russian
Citation: V. A. Milman, “Absolutely minimal extensions of functions on metric spaces”, Sb. Math., 190:6 (1999), 859–885
Citation in format AMSBIB
\Bibitem{Mil99}
\by V.~A.~Milman
\paper Absolutely minimal extensions of functions on metric spaces
\jour Sb. Math.
\yr 1999
\vol 190
\issue 6
\pages 859--885
\mathnet{http://mi.mathnet.ru//eng/sm409}
\crossref{https://doi.org/10.1070/sm1999v190n06ABEH000409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1719573}
\zmath{https://zbmath.org/?q=an:0931.54013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083433500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033241019}
Linking options:
  • https://www.mathnet.ru/eng/sm409
  • https://doi.org/10.1070/sm1999v190n06ABEH000409
  • https://www.mathnet.ru/eng/sm/v190/i6/p83
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024