Abstract:
The paper considers a multivariate analogue of the Chebyshev problem on the cube
concerning the construction of polynomials of least deviation from zero.
A classification of monomials possessing a unique
polynomial of best approximation in the space of continuous
functions on the unit cube in Rn is given. Precise solutions
in some weighted spaces Lp are found.
\Bibitem{Yud08}
\by V.~A.~Yudin
\paper Best approximation to monomials on a~cube
\jour Sb. Math.
\yr 2008
\vol 199
\issue 8
\pages 1251--1262
\mathnet{http://mi.mathnet.ru/eng/sm4089}
\crossref{https://doi.org/10.1070/SM2008v199n08ABEH003961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2452270}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260697900014}
\elib{https://elibrary.ru/item.asp?id=20359352}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57049114412}
Linking options:
https://www.mathnet.ru/eng/sm4089
https://doi.org/10.1070/SM2008v199n08ABEH003961
https://www.mathnet.ru/eng/sm/v199/i8/p149
This publication is cited in the following 2 articles:
M. Dressler, S. Foucart, M. Joldes, E. de Klerk, J.B. Lasserre, Y. Xu, “Optimization-aided construction of multivariate Chebyshev polynomials”, Journal of Approximation Theory, 2024, 106116
V. A. Yudin, “Polynomials of least deviation from zero”, Proc. Steklov Inst. Math., 280 (2013), 292–295