Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 10, Pages 1421–1450
DOI: https://doi.org/10.1070/SM2008v199n10ABEH003966
(Mi sm3953)
 

This article is cited in 1 scientific paper (total in 1 paper)

Characters of projective representations of the infinite generalized symmetric group

A. V. Dudko, N. I. Nessonov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
References:
Abstract: By the infinite generalized symmetric group we mean the group $B_m=\mathfrak{S}_\infty\ltimes\mathbb{Z}_m^\infty$, where $\mathbb{Z}_m^\infty$ is the group of all sequences $\{z_k\}_{k=1}^\infty$ in $\mathbb{Z}_m$ containing only finitely many non-zero elements $z_k$ and $\mathfrak{S}_\infty$ is the group of all finitely supported permutations of the positive integers. A complete description of the projective factor representations of $B_m$ of finite type is obtained.
Bibliography: 18 titles.
Received: 05.10.2007 and 17.03.2008
Bibliographic databases:
UDC: 512.547.4
MSC: 20C32, 20C25
Language: English
Original paper language: Russian
Citation: A. V. Dudko, N. I. Nessonov, “Characters of projective representations of the infinite generalized symmetric group”, Sb. Math., 199:10 (2008), 1421–1450
Citation in format AMSBIB
\Bibitem{DudNes08}
\by A.~V.~Dudko, N.~I.~Nessonov
\paper Characters of projective representations of the infinite generalized symmetric group
\jour Sb. Math.
\yr 2008
\vol 199
\issue 10
\pages 1421--1450
\mathnet{http://mi.mathnet.ru//eng/sm3953}
\crossref{https://doi.org/10.1070/SM2008v199n10ABEH003966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473809}
\zmath{https://zbmath.org/?q=an:1185.20013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1421D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262711500005}
\elib{https://elibrary.ru/item.asp?id=20359285}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149103964}
Linking options:
  • https://www.mathnet.ru/eng/sm3953
  • https://doi.org/10.1070/SM2008v199n10ABEH003966
  • https://www.mathnet.ru/eng/sm/v199/i10/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:472
    Russian version PDF:235
    English version PDF:10
    References:47
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024