Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 9, Pages 1367–1407
DOI: https://doi.org/10.1070/SM2008v199n09ABEH003964
(Mi sm3941)
 

This article is cited in 41 scientific papers (total in 41 papers)

Embedding theorems in constructive approximation

B. V. Simonova, S. Yu. Tikhonovbc

a Volgograd State Technical University
b Scuola Normale Superiore in Pisa
c Institució Catalana de Recerca i Estudis Avancats
References:
Abstract: Necessary and sufficient conditions for the accuracy of embedding theorems of various function classes are obtained. The main result of the paper is a criterion for embeddings between generalized Weyl-Nikol'skiǐ and generalized Lipschitz classes. To define the Weyl-Nikol'skiǐ classes we use the concept of a $(\lambda,\beta)$-derivative, which is a generalization of the derivative in the sense of Weyl. As corollaries, estimates for the norms and moduli of smoothness of transformed Fourier series are obtained.
Bibliography: 59 titles.
Received: 10.09.2007 and 07.03.2008
Russian version:
Matematicheskii Sbornik, 2008, Volume 199, Number 9, Pages 107–148
DOI: https://doi.org/10.4213/sm3941
Bibliographic databases:
UDC: 517.518.23+517.518.83
MSC: Primary 46E35, 26A33, 41A17; Secondary 26A16, 42A45
Language: English
Original paper language: Russian
Citation: B. V. Simonov, S. Yu. Tikhonov, “Embedding theorems in constructive approximation”, Mat. Sb., 199:9 (2008), 107–148; Sb. Math., 199:9 (2008), 1367–1407
Citation in format AMSBIB
\Bibitem{SimTik08}
\by B.~V.~Simonov, S.~Yu.~Tikhonov
\paper Embedding theorems in constructive approximation
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 9
\pages 107--148
\mathnet{http://mi.mathnet.ru/sm3941}
\crossref{https://doi.org/10.4213/sm3941}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2466856}
\zmath{https://zbmath.org/?q=an:1172.46023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1367S}
\elib{https://elibrary.ru/item.asp?id=20359355}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 9
\pages 1367--1407
\crossref{https://doi.org/10.1070/SM2008v199n09ABEH003964}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262711500003}
\elib{https://elibrary.ru/item.asp?id=13586630}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149135683}
Linking options:
  • https://www.mathnet.ru/eng/sm3941
  • https://doi.org/10.1070/SM2008v199n09ABEH003964
  • https://www.mathnet.ru/eng/sm/v199/i9/p107
  • This publication is cited in the following 41 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1110
    Russian version PDF:358
    English version PDF:15
    References:112
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024