|
This article is cited in 7 scientific papers (total in 7 papers)
On the successive minima of the extended logarithmic height of algebraic numbers
E. M. Matveev Moscow State Textile Academy named after A. N. Kosygin
Abstract:
Suppose that $\mathbb K\subseteq\mathbb C$ is an algebraic field; $S=2$ if $\mathbb K$ is complex, and $S=1$ if $\mathbb K\subseteq\mathbb R$; $\delta=[\mathbb K:\mathbb Q]/S$. For $\alpha\in\mathbb K^*$ let $H_*(\alpha)=\max\bigl\{\delta h(\alpha),|\ln\alpha|\bigr\}$, where $h(\alpha)$ is the Weil height of the number $\alpha$. Then the inequality
$$
H_*(\alpha_1)\dotsb H_*(\alpha_n)2.5^n(e^{0.2n}n)^S\delta\ln(4.64\delta)>1
$$
holds for multiplicatively independent $\alpha_1,\dots,\alpha_n\in\mathbb K^*$.
Received: 04.04.1997 and 10.03.1998
Citation:
E. M. Matveev, “On the successive minima of the extended logarithmic height of algebraic numbers”, Sb. Math., 190:3 (1999), 407–425
Linking options:
https://www.mathnet.ru/eng/sm394https://doi.org/10.1070/sm1999v190n03ABEH000394 https://www.mathnet.ru/eng/sm/v190/i3/p89
|
Statistics & downloads: |
Abstract page: | 711 | Russian version PDF: | 211 | English version PDF: | 26 | References: | 47 | First page: | 1 |
|