Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 12, Pages 1735–1750
DOI: https://doi.org/10.1070/SM2008v199n12ABEH003979
(Mi sm3930)
 

This article is cited in 1 scientific paper (total in 1 paper)

Optimal recovery and finite-dimensional approximation in linear inverse problems

A. V. Bayev

M. V. Lomonosov Moscow State University, Faculty of Physics
References:
Abstract: The paper considers applications of the Lagrange principle to optimal recovery in a linear inverse problem with a priori information about its solution and extends previous results of the author on optimal recovery and finite-dimensional approximation. A theorem on general optimal recovery methods for problems in finite- and infinite-dimensional spaces is established and the approximation of a problem in an infinite-dimensional space by problems in finite-dimensional spaces is investigated. Applications of the theory presented are illustrated by examples.
Bibliography: 11 titles.
Received: 16.07.2007 and 20.05.2008
Bibliographic databases:
UDC: 517.983
MSC: Primary 49K35; Secondary 47A58
Language: English
Original paper language: Russian
Citation: A. V. Bayev, “Optimal recovery and finite-dimensional approximation in linear inverse problems”, Sb. Math., 199:12 (2008), 1735–1750
Citation in format AMSBIB
\Bibitem{Bay08}
\by A.~V.~Bayev
\paper Optimal recovery and finite-dimensional approximation in linear inverse problems
\jour Sb. Math.
\yr 2008
\vol 199
\issue 12
\pages 1735--1750
\mathnet{http://mi.mathnet.ru//eng/sm3930}
\crossref{https://doi.org/10.1070/SM2008v199n12ABEH003979}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489686}
\zmath{https://zbmath.org/?q=an:1156.49306}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1735B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264258100007}
\elib{https://elibrary.ru/item.asp?id=20359294}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149104403}
Linking options:
  • https://www.mathnet.ru/eng/sm3930
  • https://doi.org/10.1070/SM2008v199n12ABEH003979
  • https://www.mathnet.ru/eng/sm/v199/i12/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024