Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 3, Pages 349–405
DOI: https://doi.org/10.1070/sm1999v190n03ABEH000392
(Mi sm392)
 

This article is cited in 29 scientific papers (total in 29 papers)

Realization of smooth functions on surfaces as height functions

E. A. Kudryavtseva

M. V. Lomonosov Moscow State University
References:
Abstract: A criterion describing all functions with finitely many critical points on two-dimensional surfaces that can be height functions corresponding to some immersions of the surface in three-dimensional Euclidean space is established. It is proved that each smooth deformation of a Morse function on the surface can be realized as the deformation of the height function induced by a suitable deformation of the immersion of the surface in $\mathbb R^3$. A new proof of the well-known result on the path connectedness of the space of all smooth immersions of a two-dimensional sphere in $\mathbb R^3$ obtained. A new description of an eversion of a two-dimensional sphere in $\mathbb R^3$ is given. Generalizations of S. Matveev's result on the connectedness of the space of Morse functions with fixed numbers of minima and maxima on a closed surface are established.
Received: 26.02.1998
Russian version:
Matematicheskii Sbornik, 1999, Volume 190, Number 3, Pages 29–88
DOI: https://doi.org/10.4213/sm392
Bibliographic databases:
UDC: 515.162.6+515.164.63+515.148+515.164.174
MSC: Primary 57R42, 57R52; Secondary 58F07
Language: English
Original paper language: Russian
Citation: E. A. Kudryavtseva, “Realization of smooth functions on surfaces as height functions”, Mat. Sb., 190:3 (1999), 29–88; Sb. Math., 190:3 (1999), 349–405
Citation in format AMSBIB
\Bibitem{Kud99}
\by E.~A.~Kudryavtseva
\paper Realization of smooth functions on surfaces as height functions
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 3
\pages 29--88
\mathnet{http://mi.mathnet.ru/sm392}
\crossref{https://doi.org/10.4213/sm392}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1700994}
\zmath{https://zbmath.org/?q=an:0941.57026}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 3
\pages 349--405
\crossref{https://doi.org/10.1070/sm1999v190n03ABEH000392}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000082221600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033244083}
Linking options:
  • https://www.mathnet.ru/eng/sm392
  • https://doi.org/10.1070/sm1999v190n03ABEH000392
  • https://www.mathnet.ru/eng/sm/v190/i3/p29
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:880
    Russian version PDF:518
    English version PDF:26
    References:75
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024