Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 7, Pages 945–963
DOI: https://doi.org/10.1070/SM2008v199n07ABEH003948
(Mi sm3906)
 

This article is cited in 13 scientific papers (total in 13 papers)

Independent functions in rearrangement invariant spaces and the Kruglov property

S. V. Astashkin

Samara State University
References:
Abstract: Let $X$ be a separable or maximal rearrangement invariant space on $[0,1]$. It is shown that the inequality
\begin{equation*} \biggl\|\,\sum_{k=1}^\infty f_k\biggr\|_{X} \le C\biggl\|\biggl(\,\sum_{k=1}^\infty f_k^2\biggl)^{1/2}\biggr\|_X \end{equation*}
holds for an arbitrary sequence of independent functions $\{f_k\}_{k=1}^\infty\subset X$, $\displaystyle\int_0^1f_k(t)\,dt=0$, $k=1,2,\dots$, if and only if $X$ has the Kruglov property. As a consequence, it is proved that the same property is necessary and sufficient for a version of Maurey's well-known inequality for vector-valued Rademacher series with independent coefficients to hold in $X$.
Bibliography: 24 titles.
Received: 08.06.2007 and 17.03.2008
Russian version:
Matematicheskii Sbornik, 2008, Volume 199, Number 7, Pages 3–20
DOI: https://doi.org/10.4213/sm3906
Bibliographic databases:
UDC: 517.982.27
MSC: 46E30
Language: English
Original paper language: Russian
Citation: S. V. Astashkin, “Independent functions in rearrangement invariant spaces and the Kruglov property”, Mat. Sb., 199:7 (2008), 3–20; Sb. Math., 199:7 (2008), 945–963
Citation in format AMSBIB
\Bibitem{Ast08}
\by S.~V.~Astashkin
\paper Independent functions in rearrangement invariant
spaces and the Kruglov property
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 7
\pages 3--20
\mathnet{http://mi.mathnet.ru/sm3906}
\crossref{https://doi.org/10.4213/sm3906}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2488220}
\zmath{https://zbmath.org/?q=an:1280.46015}
\elib{https://elibrary.ru/item.asp?id=20425520}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 7
\pages 945--963
\crossref{https://doi.org/10.1070/SM2008v199n07ABEH003948}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260697900001}
\elib{https://elibrary.ru/item.asp?id=14703837}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57049146929}
Linking options:
  • https://www.mathnet.ru/eng/sm3906
  • https://doi.org/10.1070/SM2008v199n07ABEH003948
  • https://www.mathnet.ru/eng/sm/v199/i7/p3
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:453
    Russian version PDF:216
    English version PDF:15
    References:47
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024