Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 4, Pages 539–556
DOI: https://doi.org/10.1070/SM2008v199n04ABEH003932
(Mi sm3864)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic behaviour of solutions of semilinear parabolic equations

Yu. V. Egorova, V. A. Kondratievb

a Université Paul Sabatier
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The asymptotic behaviour of solutions of a second-order semilinear parabolic equation is analyzed in a cylindrical domain that is bounded in the space variables. The dominant term of the asymptotic expansion of the solution as $t\to+\infty$ is found. It is shown that the solution of this problem is asymptotically equivalent to the solution of a certain non-linear ordinary differential equation.
Bibliography: 8 titles.
Received: 07.05.2007 and 27.09.2007
Russian version:
Matematicheskii Sbornik, 2008, Volume 199, Number 4, Pages 65–82
DOI: https://doi.org/10.4213/sm3864
Bibliographic databases:
UDC: 517.956.45
MSC: 35K55, 35B40
Language: English
Original paper language: Russian
Citation: Yu. V. Egorov, V. A. Kondratiev, “Asymptotic behaviour of solutions of semilinear parabolic equations”, Mat. Sb., 199:4 (2008), 65–82; Sb. Math., 199:4 (2008), 539–556
Citation in format AMSBIB
\Bibitem{EgoKon08}
\by Yu.~V.~Egorov, V.~A.~Kondratiev
\paper Asymptotic behaviour of solutions of
semilinear parabolic equations
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 4
\pages 65--82
\mathnet{http://mi.mathnet.ru/sm3864}
\crossref{https://doi.org/10.4213/sm3864}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2410140}
\zmath{https://zbmath.org/?q=an:1171.35016}
\elib{https://elibrary.ru/item.asp?id=20359321}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 4
\pages 539--556
\crossref{https://doi.org/10.1070/SM2008v199n04ABEH003932}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257185400011}
\elib{https://elibrary.ru/item.asp?id=13882204}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47949122389}
Linking options:
  • https://www.mathnet.ru/eng/sm3864
  • https://doi.org/10.1070/SM2008v199n04ABEH003932
  • https://www.mathnet.ru/eng/sm/v199/i4/p65
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:633
    Russian version PDF:265
    English version PDF:22
    References:91
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024