Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 4, Pages 477–493
DOI: https://doi.org/10.1070/SM2008v199n04ABEH003929
(Mi sm3851)
 

This article is cited in 12 scientific papers (total in 12 papers)

On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in $C^*$-algebras

A. M. Bikchentaev

N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
References:
Abstract: It is proved that every skew-Hermitian element of any properly infinite von Neumann algebra can be represented in the form of a finite sum of commutators of projections in this algebra. A new commutation condition for projections in terms of their upper (lower) bound in the lattice of all projections of the algebra is obtained. For the full matrix algebra the set of operators with canonical trace zero is described in terms of finite sums of commutators of projections and the domain in which the trace is positive is described in terms of finite sums of pairwise products of projections. Applications to $AF$-algebras are obtained.
Bibliography: 33 titles.
Received: 12.03.2007 and 24.10.2007
Russian version:
Matematicheskii Sbornik, 2008, Volume 199, Number 4, Pages 3–20
DOI: https://doi.org/10.4213/sm3851
Bibliographic databases:
UDC: 517.983+517.987
MSC: Primary 46L10; Secondary 47C15
Language: English
Original paper language: Russian
Citation: A. M. Bikchentaev, “On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in $C^*$-algebras”, Mat. Sb., 199:4 (2008), 3–20; Sb. Math., 199:4 (2008), 477–493
Citation in format AMSBIB
\Bibitem{Bik08}
\by A.~M.~Bikchentaev
\paper On the representation of elements of a von Neumann algebra
in the form of finite sums of products of projections.
III.~Commutators in $C^*$-algebras
\jour Mat. Sb.
\yr 2008
\vol 199
\issue 4
\pages 3--20
\mathnet{http://mi.mathnet.ru/sm3851}
\crossref{https://doi.org/10.4213/sm3851}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2410137}
\zmath{https://zbmath.org/?q=an:1175.46053}
\elib{https://elibrary.ru/item.asp?id=20359318}
\transl
\jour Sb. Math.
\yr 2008
\vol 199
\issue 4
\pages 477--493
\crossref{https://doi.org/10.1070/SM2008v199n04ABEH003929}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257185400008}
\elib{https://elibrary.ru/item.asp?id=20822516}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47949101833}
Linking options:
  • https://www.mathnet.ru/eng/sm3851
  • https://doi.org/10.1070/SM2008v199n04ABEH003929
  • https://www.mathnet.ru/eng/sm/v199/i4/p3
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1527
    Russian version PDF:1115
    English version PDF:26
    References:780
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024