Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 3, Pages 319–339
DOI: https://doi.org/10.1070/SM2008v199n03ABEH003922
(Mi sm3836)
 

This article is cited in 7 scientific papers (total in 7 papers)

Affine toric $\operatorname{SL}(2)$-embeddings

S. A. Gaifullin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In the theory of affine $\operatorname{SL}(2)$-embeddings, which was constructed in 1973 by Popov, a locally transitive action of the group $\operatorname{SL}(2)$ on a normal affine three-dimensional variety $X$ is determined by a pair $(p/q,r)$, where $0<p/q\le1$ is a rational number written as an irreducible fraction and called the height of the action, while $r$ is a positive integer that is the order of the stabilizer of a generic point. In the present paper it is shown that the variety $X$ is toric, that is, it admits a locally transitive action of an algebraic torus if and only if the number $r$ is divisible by $q-p$. For that, the following criterion for an affine $G/H$-embedding to be toric is proved. Let $X$ be a normal affine variety, $G$ a simply connected semisimple group acting regularly on $X$, and $H\subset G$ a closed subgroup such that the character group $\mathfrak X(H)$ of the group $H$ is finite. If an open equivariant embedding $G/H\hookrightarrow X$ is defined, then $X$ is toric if and only if there exist a quasitorus $\widehat T$ and a $(G\times\widehat T)$-module $V$ such that $X\stackrel G\cong V/\!/\widehat T$. In the substantiation of this result a key role is played by Cox's construction in toric geometry.
Bibliography: 12 titles.
Received: 06.02.2007
Bibliographic databases:
UDC: 512.745.2
MSC: Primary 14M25; Secondary 14L30, 14M17, 52B20
Language: English
Original paper language: Russian
Citation: S. A. Gaifullin, “Affine toric $\operatorname{SL}(2)$-embeddings”, Sb. Math., 199:3 (2008), 319–339
Citation in format AMSBIB
\Bibitem{Gai08}
\by S.~A.~Gaifullin
\paper Affine toric $\operatorname{SL}(2)$-embeddings
\jour Sb. Math.
\yr 2008
\vol 199
\issue 3
\pages 319--339
\mathnet{http://mi.mathnet.ru//eng/sm3836}
\crossref{https://doi.org/10.1070/SM2008v199n03ABEH003922}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2409490}
\zmath{https://zbmath.org/?q=an:1171.14036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257185400001}
\elib{https://elibrary.ru/item.asp?id=20359309}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47949096132}
Linking options:
  • https://www.mathnet.ru/eng/sm3836
  • https://doi.org/10.1070/SM2008v199n03ABEH003922
  • https://www.mathnet.ru/eng/sm/v199/i3/p3
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024