Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 9, Pages 1351–1377
DOI: https://doi.org/10.1070/SM2007v198n09ABEH003887
(Mi sm3819)
 

This article is cited in 1 scientific paper (total in 1 paper)

Lower bounds for homological dimensions of Banach algebras

Yu. V. Selivanov

Moscow State Aviation Technological University
References:
Abstract: Let $A$ be a commutative unital Banach algebra with infinite spectrum. Then by Helemskiǐ's global dimension theorem the global homological dimension of $A$ is strictly greater than one. This estimate has no analogue for abstract algebras or non-normable topological algebras. It is proved in the present paper that for every unital Banach algebra $B$ the global homological dimensions and the homological bidimensions of the Banach algebras $A\mathbin{\widehat{\otimes}}B$ and $B$ (assuming certain restrictions on $A$) are related by $\operatorname{dg}A\mathbin{\widehat{\otimes}}B\geqslant 2+\operatorname{dg}B$ and $\operatorname{db}A\mathbin{\widehat{\otimes}}B\geqslant 2+\operatorname{db}B$. Thus, a partial extension of Helemskiǐ's theorem to tensor products is obtained.
Bibliography: 28 titles.
Received: 13.12.2006 and 09.04.2007
Bibliographic databases:
UDC: 517.98
MSC: Primary 46J05; Secondary 46J20, 46M20, 46H25
Language: English
Original paper language: Russian
Citation: Yu. V. Selivanov, “Lower bounds for homological dimensions of Banach algebras”, Sb. Math., 198:9 (2007), 1351–1377
Citation in format AMSBIB
\Bibitem{Sel07}
\by Yu.~V.~Selivanov
\paper Lower bounds for homological dimensions of Banach algebras
\jour Sb. Math.
\yr 2007
\vol 198
\issue 9
\pages 1351--1377
\mathnet{http://mi.mathnet.ru//eng/sm3819}
\crossref{https://doi.org/10.1070/SM2007v198n09ABEH003887}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2360795}
\zmath{https://zbmath.org/?q=an:1147.46046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252573100008}
\elib{https://elibrary.ru/item.asp?id=9557509}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38849103825}
Linking options:
  • https://www.mathnet.ru/eng/sm3819
  • https://doi.org/10.1070/SM2007v198n09ABEH003887
  • https://www.mathnet.ru/eng/sm/v198/i9/p133
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024