Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 3, Pages 459–475
DOI: https://doi.org/10.1070/SM2008v199n03ABEH003928
(Mi sm3814)
 

This article is cited in 1 scientific paper (total in 1 paper)

Multirectangular characteristics for Köthe power spaces of the second kind

P. A. Chalov

Southern Federal University
References:
Abstract: Isomorphisms of the so-called Köthe power spaces of the second kind are considered. These spaces are determined by a pair of sequences of positive numbers. Counting functions for a pair of sequences ($m$-rectangular characteristics of the corresponding Köthe space of the second kind) are introduced. They are shown to be invariant under isomorphisms. The proof is based on the construction of special compound invariants suitable for the class of spaces under consideration. New results on the linear topological structure of spaces of analytic functions in multicircular domains are obtained as an application.
Bibliography: 29 titles.
Received: 29.11.2006 and 06.09.2007
Bibliographic databases:
UDC: 517.982.257+517.982.276
MSC: 46A45, 32A37
Language: English
Original paper language: Russian
Citation: P. A. Chalov, “Multirectangular characteristics for Köthe power spaces of the second kind”, Sb. Math., 199:3 (2008), 459–475
Citation in format AMSBIB
\Bibitem{Cha08}
\by P.~A.~Chalov
\paper Multirectangular characteristics for K\"othe power spaces of the second kind
\jour Sb. Math.
\yr 2008
\vol 199
\issue 3
\pages 459--475
\mathnet{http://mi.mathnet.ru//eng/sm3814}
\crossref{https://doi.org/10.1070/SM2008v199n03ABEH003928}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2409496}
\zmath{https://zbmath.org/?q=an:1181.46003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257185400007}
\elib{https://elibrary.ru/item.asp?id=20359316}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48049123238}
Linking options:
  • https://www.mathnet.ru/eng/sm3814
  • https://doi.org/10.1070/SM2008v199n03ABEH003928
  • https://www.mathnet.ru/eng/sm/v199/i3/p143
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025