Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 2, Pages 165–191
DOI: https://doi.org/10.1070/sm1999v190n02ABEH000381
(Mi sm381)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the homotopy equivalence of simple AI-algebras

O. Yu. Aristov

Obninsk State Technical University for Nuclear Power Engineering
References:
Abstract: Let $A$ and $B$ be simple unital AI-algebras (an AI-algebra is an inductive limit of $C^*$-algebras of the form $\bigoplus_i^kC([0,1],M_{N_i})$. It is proved that two arbitrary unital homomorphisms from $A$ into $B$ such that the corresponding maps $\mathrm K_0A\to\mathrm K_0B$ coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for $A$ and $B$ to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same $\mathrm K$-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, which is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix $h$ can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with $h$.
Received: 14.05.1998
Russian version:
Matematicheskii Sbornik, 1999, Volume 190, Number 2, Pages 3–30
DOI: https://doi.org/10.4213/sm381
Bibliographic databases:
UDC: 517.986.32
MSC: Primary 46L85, 58B30; Secondary 46L89
Language: English
Original paper language: Russian
Citation: O. Yu. Aristov, “On the homotopy equivalence of simple AI-algebras”, Mat. Sb., 190:2 (1999), 3–30; Sb. Math., 190:2 (1999), 165–191
Citation in format AMSBIB
\Bibitem{Ari99}
\by O.~Yu.~Aristov
\paper On the homotopy equivalence of simple AI-algebras
\jour Mat. Sb.
\yr 1999
\vol 190
\issue 2
\pages 3--30
\mathnet{http://mi.mathnet.ru/sm381}
\crossref{https://doi.org/10.4213/sm381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1700998}
\zmath{https://zbmath.org/?q=an:0942.46043}
\transl
\jour Sb. Math.
\yr 1999
\vol 190
\issue 2
\pages 165--191
\crossref{https://doi.org/10.1070/sm1999v190n02ABEH000381}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081091800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033246625}
Linking options:
  • https://www.mathnet.ru/eng/sm381
  • https://doi.org/10.1070/sm1999v190n02ABEH000381
  • https://www.mathnet.ru/eng/sm/v190/i2/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:311
    Russian version PDF:169
    English version PDF:17
    References:35
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024