Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 26, Issue 4, Pages 493–554
DOI: https://doi.org/10.1070/SM1975v026n04ABEH002493
(Mi sm3807)
 

This article is cited in 190 scientific papers (total in 190 papers)

A characterization of the spectrum of Hill's operator

V. A. Marchenko, I. V. Ostrovskii
References:
Abstract: This article contains a complete derivation of necessary and sufficient conditions which a given sequence of intervals must satisfy in order that a Hill differential operator $L[y]=-y''+v(x)y$, with real, periodic potential $v(x)$, exist, whose spectrum coincides with this sequence of intervals. The proof is based on a specific representation of entire functions $u(z)$ such that the equation $u^2(z)=1$ has only real roots, conformal mappings having properties associated with this representation, and refined asymptotic formulas for the eigenvalues of certain boundary value problems.
Figures: 4.
Bibliography: 17 titles.
Received: 03.02.1975
Bibliographic databases:
UDC: 517.9
MSC: Primary 34B25, 34B30, 47E05; Secondary 30A64, 30A24, 35Q99
Language: English
Original paper language: Russian
Citation: V. A. Marchenko, I. V. Ostrovskii, “A characterization of the spectrum of Hill's operator”, Math. USSR-Sb., 26:4 (1975), 493–554
Citation in format AMSBIB
\Bibitem{MarOst75}
\by V.~A.~Marchenko, I.~V.~Ostrovskii
\paper A~characterization of the spectrum of Hill's operator
\jour Math. USSR-Sb.
\yr 1975
\vol 26
\issue 4
\pages 493--554
\mathnet{http://mi.mathnet.ru//eng/sm3807}
\crossref{https://doi.org/10.1070/SM1975v026n04ABEH002493}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=409965}
\zmath{https://zbmath.org/?q=an:0327.34021}
Linking options:
  • https://www.mathnet.ru/eng/sm3807
  • https://doi.org/10.1070/SM1975v026n04ABEH002493
  • https://www.mathnet.ru/eng/sm/v139/i4/p540
  • This publication is cited in the following 190 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1855
    Russian version PDF:648
    English version PDF:29
    References:93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024