Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 11, Pages 1599–1636
DOI: https://doi.org/10.1070/SM2007v198n11ABEH003898
(Mi sm3792)
 

This article is cited in 1 scientific paper (total in 1 paper)

The problem of birth of autowaves in parabolic systems with small diffusion

A. Yu. Kolesova, N. Kh. Rozovb, V. A. Sadovnichiib

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University
References:
Abstract: A parabolic reaction-diffusion system with zero Neumann boundary conditions at the end-points of a finite interval is considered under the following basic assumptions. First, the matrix diffusion coefficient in the system is proportional to a small parameter $\varepsilon>0$, and the system itself possesses a spatially homogeneous cycle (independent of the space variable) of amplitude of order $\sqrt\varepsilon$ born by a zero equilibrium at an Andronov–Hopf bifurcation. Second, it is assumed that the matrix diffusion depends on an additional small parameter $\mu\geqslant0$, and for $\mu=0$ there occurs in the stability problem for the homogeneous cycle the critical case of characteristic multiplier 1 of multiplicity 2 without Jordan block. Under these constraints and for independently varied parameters $\varepsilon$ and $\mu$ the problem of the existence and the stability of spatially inhomogeneous auto-oscillations branching from the homogeneous cycle is analysed.
Bibliography: 16 titles.
Received: 25.10.2006 and 23.07.2007
Bibliographic databases:
UDC: 517.957
MSC: 35K57, 35B10, 35B32
Language: English
Original paper language: Russian
Citation: A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “The problem of birth of autowaves in parabolic systems with small diffusion”, Sb. Math., 198:11 (2007), 1599–1636
Citation in format AMSBIB
\Bibitem{KolRozSad07}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov, V.~A.~Sadovnichii
\paper The problem of birth of autowaves in parabolic
systems with small diffusion
\jour Sb. Math.
\yr 2007
\vol 198
\issue 11
\pages 1599--1636
\mathnet{http://mi.mathnet.ru//eng/sm3792}
\crossref{https://doi.org/10.1070/SM2007v198n11ABEH003898}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2374385}
\zmath{https://zbmath.org/?q=an:1160.35450}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253636300004}
\elib{https://elibrary.ru/item.asp?id=9578644}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40749148019}
Linking options:
  • https://www.mathnet.ru/eng/sm3792
  • https://doi.org/10.1070/SM2007v198n11ABEH003898
  • https://www.mathnet.ru/eng/sm/v198/i11/p67
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:529
    Russian version PDF:243
    English version PDF:8
    References:56
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024