Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 11, Pages 1635–1667
DOI: https://doi.org/10.1070/SM2006v197n11ABEH003816
(Mi sm3787)
 

Method of orbit sums in the theory of modular vector invariants

S. A. Stepanov

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: Let $F$ be a field, $V$ a finite-dimensional $F$-vector space, $G\leqslant\operatorname{GL}_F(V)$ a finite group, and $V^m=V\oplus\dots\oplus V$ the $m$-fold direct sum with the diagonal action of $G$. The group $G$ acts naturally on the symmetric graded algebra $A_m=F[V^m]$ as a group of non-degenerate linear changes of the variables. Let $A_m^G$ be the subalgebra of invariants of the polynomial algebra $A_m$ with respect to $G$. A classical result of Noether [1] says that if $\operatorname{char}F=0$, then $A_m^G$ is generated as an $F$-algebra by homogeneous polynomials of degree at most $|G|$, no matter how large $m$ can be. On the other hand, it was proved by Richman [2], [3] that this result does not hold when the characteristic of $F$ is positive and divides the order $|G|$ of $G$. Let $p$, $p>2$, be a prime number, $F=F_p$ a finite field of $p$ elements, $V$ a linear $F_p$-vector space of dimension $n$, and $H\leqslant\operatorname{GL}_{F_p}(V)$ a cyclic group of order $p$ generated by a matrix $\gamma$ of a certain special form. In this paper we describe explicitly (Theorem 1) one complete set of generators of $A_m^H$. After that, for an arbitrary complete set of generators of this algebra we find a lower bound for the highest degree of the generating elements of this algebra. This is a significant extension of the corresponding result of Campbell and Hughes [4] for the particular case of $n=2$. As a consequence we show (Theorem 3) that if $m>n$ and $G\geqslant H$ is an arbitrary finite group, then each complete set of generators of $A_m^G$ contains an element of degree at least $2(m-n+2r)(p-1)/r$, where $r=r(H)$ is a positive integer independent of the structure of the generating matrix $\gamma$ of the group $H$. This results refines considerably the earlier lower bound obtained by Richman [3].
Bibliography: 13 titles.
Received: 29.01.2004 and 15.02.2006
Russian version:
Matematicheskii Sbornik, 2006, Volume 197, Number 11, Pages 79–114
DOI: https://doi.org/10.4213/sm3787
Bibliographic databases:
UDC: 511
MSC: 13A50
Language: English
Original paper language: Russian
Citation: S. A. Stepanov, “Method of orbit sums in the theory of modular vector invariants”, Mat. Sb., 197:11 (2006), 79–114; Sb. Math., 197:11 (2006), 1635–1667
Citation in format AMSBIB
\Bibitem{Ste06}
\by S.~A.~Stepanov
\paper Method of orbit sums in the theory of
modular vector invariants
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 11
\pages 79--114
\mathnet{http://mi.mathnet.ru/sm3787}
\crossref{https://doi.org/10.4213/sm3787}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2437089}
\zmath{https://zbmath.org/?q=an:1155.13006}
\elib{https://elibrary.ru/item.asp?id=9311804}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 11
\pages 1635--1667
\crossref{https://doi.org/10.1070/SM2006v197n11ABEH003816}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245209100005}
\elib{https://elibrary.ru/item.asp?id=18101929}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34147192088}
Linking options:
  • https://www.mathnet.ru/eng/sm3787
  • https://doi.org/10.1070/SM2006v197n11ABEH003816
  • https://www.mathnet.ru/eng/sm/v197/i11/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:468
    Russian version PDF:176
    English version PDF:12
    References:56
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024