Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 12, Pages 1747–1761
DOI: https://doi.org/10.1070/SM2007v198n12ABEH003904
(Mi sm3774)
 

This article is cited in 11 scientific papers (total in 11 papers)

Representation of subharmonic functions in a half-plane

K. G. Malyutina, N. Sadikb

a V. N. Karazin Kharkiv National University
b İstanbul University
References:
Abstract: The theory of subharmonic functions of finite order is based to a considerable extent on integral formulae. In the present paper representations are obtained for subharmonic functions in the upper half-plane with more general growth $\gamma(r)$ than finite order. The main result can be stated as follows. Let $\gamma(r)$ be a growth function such that either $\ln\gamma(r)$ is a convex function of $\ln r$ or the lower order of $\gamma(r)$ is infinite. Then for each proper subharmonic function $v$ of growth $\gamma(r)$ there exist an unbounded set $\mathbf R$ of positive numbers and a family $\{u_R:R\in\mathbf R\}$ of proper subharmonic functions in the upper half-plane $\mathbb{C}_+$ such that
1) the full measures of the $u_R$ in the discs $|z|\leqslant R$ are equal to the full measure of the function $v$;
2) $v-u_R\rightrightarrows0$ uniformly on compact subsets of $\mathbb{C}_+$ as $R\to\infty$, $R\in\mathbf R$;
3) the function family $\{u_R:R\in\mathbf R\}$ satisfies the growth constraints uniformly in $R$, that is, $T(r,u_R)\leqslant A\gamma(Br)/r$, where $A$ and $B$ are constants and $T(r,\,\cdot\,)$ is the growth characteristic.
Bibliography: 16 titles.
Received: 13.10.2006 and 06.04.2007
Bibliographic databases:
UDC: 517.574
MSC: 31A05
Language: English
Original paper language: Russian
Citation: K. G. Malyutin, N. Sadik, “Representation of subharmonic functions in a half-plane”, Sb. Math., 198:12 (2007), 1747–1761
Citation in format AMSBIB
\Bibitem{MalSad07}
\by K.~G.~Malyutin, N.~Sadik
\paper Representation of subharmonic functions in a~half-plane
\jour Sb. Math.
\yr 2007
\vol 198
\issue 12
\pages 1747--1761
\mathnet{http://mi.mathnet.ru//eng/sm3774}
\crossref{https://doi.org/10.1070/SM2007v198n12ABEH003904}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2380805}
\zmath{https://zbmath.org/?q=an:1154.31001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253636300010}
\elib{https://elibrary.ru/item.asp?id=9602056}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40749139858}
Linking options:
  • https://www.mathnet.ru/eng/sm3774
  • https://doi.org/10.1070/SM2007v198n12ABEH003904
  • https://www.mathnet.ru/eng/sm/v198/i12/p47
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:545
    Russian version PDF:229
    English version PDF:29
    References:57
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024