Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1999, Volume 190, Issue 1, Pages 29–69
DOI: https://doi.org/10.1070/sm1999v190n01ABEH000377
(Mi sm377)
 

This article is cited in 13 scientific papers (total in 14 papers)

Spectral boundary value problems for the Helmholtz equation with spectral parameter in boundary conditions on a non-smooth surface

M. S. Agranovicha, R. Mennickenb

a Moscow State Institute of Electronics and Mathematics
b Universität Regensburg
References:
Abstract: The spectral properties of four problems for the Helmholtz equation with spectral parameter in boundary or transmission conditions on a closed Lipschitz surface $S$ are studied. These problems are related to the classical integral operators of potential type on $S$ for the Helmholtz equation. They have been studied before in the case when $S$ is infinitely smooth. It is shown that the most important properties of eigenvalues and root functions hold also for Lipschitz surfaces $S$. The machinery of potential theory in Lipschitz domains and of spectral theory is used in the proofs.
Received: 19.01.1998
Bibliographic databases:
UDC: 517.98
MSC: Primary 35P99; Secondary 35J05, 47F05
Language: English
Original paper language: Russian
Citation: M. S. Agranovich, R. Mennicken, “Spectral boundary value problems for the Helmholtz equation with spectral parameter in boundary conditions on a non-smooth surface”, Sb. Math., 190:1 (1999), 29–69
Citation in format AMSBIB
\Bibitem{AgrMen99}
\by M.~S.~Agranovich, R.~Mennicken
\paper Spectral boundary value problems for the~Helmholtz equation with spectral parameter in~boundary conditions on a~non-smooth surface
\jour Sb. Math.
\yr 1999
\vol 190
\issue 1
\pages 29--69
\mathnet{http://mi.mathnet.ru//eng/sm377}
\crossref{https://doi.org/10.1070/sm1999v190n01ABEH000377}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1701879}
\zmath{https://zbmath.org/?q=an:0937.35026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081091800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033472822}
Linking options:
  • https://www.mathnet.ru/eng/sm377
  • https://doi.org/10.1070/sm1999v190n01ABEH000377
  • https://www.mathnet.ru/eng/sm/v190/i1/p29
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:780
    Russian version PDF:403
    English version PDF:56
    References:91
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024